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A B S T R A C T

In this work, a physics-informed deep learning model is developed to achieve the reconstruction of the three-
dimensional (3-D) spatiotemporal wind field in front of a wind turbine, by combining the 3-D Navier–Stokes
equations and the scanning LIDAR measurements. To the best of the authors’ knowledge, this is for the first
time that the full 3-D spatiotemporal wind field reconstruction is achieved based on real-time measurements
and flow physics. The proposed method is evaluated using high-fidelity large eddy simulations. The results
show that the wind vector field in the whole 3-D domain is predicted very accurately based on only scalar
line-of-sight LIDAR measurements at sparse locations. Specifically, at the baseline case, the prediction errors
for the streamwise, spanwise and vertical velocity fields are 0.263 m/s, 0.397 m/s and 0.361 m/s, respectively.
The prediction errors for the horizontal and vertical direction fields are 2.84◦ and 2.58◦ which are important
in tackling yaw misalignment and turbine tilt control, respectively. Further analysis shows that the 3-D
wind features are captured clearly, including the evolutions of flow structures, the wind shear in vertical
direction, the blade-level speed variations due to turbine rotation, and the speed variations modulated by
the turbulent wind. Also, the developed model achieves short-term wind forecasting without the commonly-
used Taylor’s frozen turbulence hypothesis. Furthermore it is very useful in advancing other wind energy
research fields e.g. wind turbine control & monitoring, power forecasting, and resource assessments because
the 3-D spatiotemporal information is important for them but not available with current sensor and prediction
technologies.
1. Introduction

As one of the largest sustainable energy resources, wind energy
is under intense investment worldwide. It plays a more and more
important role in achieving carbon neutrality while meeting the global
power demand. However, the spatial and temporal variability of the
intermittent and chaotic wind still poses great challenges for wind
industry, in the scenarios such as the control design for wind tur-
bines [1,2], the integration of wind power into the power grid [3,4],
and the wind resource assessment [5,6]. To tackle these challenges, the
accurate prediction of detailed spatiotemporal wind velocity field is of
vital importance.

In recent years various measurement technologies, such as wind
turbine-mounted light detection and ranging (LIDAR) devices [7], have
been used on wind turbines to measure the incoming wind speed. The
LIDAR measurement data can be analyzed [8,9] to provide preview
wind information. Meanwhile numerous wind prediction approaches
have been proposed and recent advancements include the deep learning
ensemble model with data denoising [10], the recurrent neural net-
works based approach with error correction [11], and the variational
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Bayesian deep learning based approach [12]. These studies showed
very promising results in wind speed predictions. However, as the wind
measurement data is normally only available at sparse spatial locations,
the whole flow field in front of the wind turbines remains unknown.
Numerical approaches have been investigated to obtain the detailed
spatiotemporal wind field information [13,6], by numerically solving
the Navier–Stokes (NS) equations. The integration of wind measure-
ments and numerical simulations has also been explored recently [14].
However, numerical models were mainly designed for forward simu-
lations thus cannot take real-time wind measurements into account.
In order to achieve more accurate and more detailed spatiotemporal
wind predictions, a very promising direction is to develop a method
that can take advantage of both the real-time measurements and the
flow physics, therefore achieving superior prediction performance.

Currently, the studies on wind predictions via the fusion of mea-
surement data with flow physics are still rare. In [15], a wind field
reconstruction method was proposed by combining a low-order dy-
namic wind model with LIDAR measurements where an unscented
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Kalman filter (UKF) was used for state estimations. In [16], to avoid
the use of low-order wind models, a spatiotemporal wind predic-
tion framework was proposed where a reduced-order nonlinear model
was derived directly from NS equations and then a modified UKF
algorithm was employed for state estimations. In [17], a wind field
reconstruction method was developed based on computational fluid
dynamics (CFD) and proper orthogonal decomposition (POD), where
CFD simulations were carried out to generate a database of wind fields
and POD was employed to extract the low-dimensional basis vectors.
The flow field reconstruction was then carried out through these basis
vectors based on measurements from the optimally-placed sensors. The
authors of [17] further investigated the optimal design of the sensor
arrangement in order to improve the reconstruction performance [18].
To summarize, all these studies showed very promising results, by tak-
ing flow physics into account in the wind field reconstruction process
(either through dynamic wind model, NS equations or CFD simula-
tions). However, due to the complexity (e.g. the strong nonlinearity
and the multi-scale characteristics) of the wind dynamics, the afore-
mentioned studies all included an explicit model reduction process in
reconstructing the flow field (i.e. low-order wind model [15], reduced-
order model from NS equations [16], dimension reduction by POD [17,
18]). Thus their prediction performances were limited by the explicit
model reduction errors. To address these, in our recent study [19], a
2-D spatiotemporal wind field reconstruction was achieved based on
NS equations without model reductions, which followed the physics-
informed deep learning technique [20] where the 2-D NS equations
were incorporated in the deep neural network (NN) structure. How-
ever, similarly to the above studies, our work [19] only investigated
the reconstructions of the two-dimensional (2-D) flow field, while in
practice the wind field is three-dimensional (3-D) and the variation of
wind speed in vertical direction (e.g. the wind shear) has a clear impact
on the wind turbine loading (in particularly its spatial variations), wind
power generations and wind resource assessment [21,22]. Thus a big
research gap still exists.

In order to fill the gap, the present work extends our research in [19]
to develop a 3-D spatiotemporal wind field reconstruction method,
through combining the 3-D NS equations and the scanning LIDAR
measurements into physics-informed deep learning. In particular, a
deep NN is first constructed, then the 3-D NS equations are encoded
into the deep NN to form the NS residue terms, by using automatic
differentiation. Next, the measurement process of the scanning LIDAR
is encoded into the deep NN to map the full flow state and the real-
time LIDAR beam directions to LIDAR observations. The NN training
is finally carried out to minimize the LIDAR observation errors and
the NS residues simultaneously. Because the 3-D NS equations can
describe the 3D unsteady wind very well (without relying on any
reduced-order models or dimension reductions such as POD) while the
scanning LIDAR provides sparse yet valuable information about the
incoming 3-D wind, the whole 3-D spatiotemporal wind field can be
predicted after training. To the best of the authors’ knowledge, this is
for the first time that the prediction of 3-D spatiotemporal wind field is
achieved based on real-time scattered measurements and physics. From
the predicted spatiotemporal flow field, the mean wind quantities (such
as the effective wind speed at different heights) and the instantaneous
wind quantities (such as the wind speed at specific turbine blade
locations) can be extracted.

In addition, the present work further improves the wind field recon-
struction performance by taking full advantage of the physics-informed
deep learning framework’s ability in solving inverse problems. In par-
ticular, instead of incorporating the NS equations with pre-determined
parameters (i.e. the air viscosity in the transport terms), as was done
in [19], the present work treats the parameters in the NS equations
(i.e. the effective viscosity which is the sum of the air viscosity and tur-
bulent viscosity) as training variables. Therefore, this work achieves the
inference of the turbulent viscosity and the reconstruction of the 3-D
2

wind field simultaneously. The benefits of solving the inverse problem
instead of directly specifying the NS equations with the air viscosity
are two-fold. First, the accuracy of reconstructing the 3-D wind field is
improved, as in this way the turbulence effects are taken into account.
Second, the turbulent viscosity is obtained after training, which can be
used for characterizing the turbulence intensity in other applications
such as the modeling and numerical simulation of turbulent wind.

To evaluate the performance of the proposed method, a large-
scale CFD flow solver SOWFA (Simulator for Onshore/Offshore Wind
Farm Applications) developed by National Renewable Energy Labora-
tory [23], is employed to carry out high-fidelity numerical experiments
for a set of wind speed cases ranging from below-rated, rated, to
above-rated conditions of typical wind turbines. SOWFA can simulate
the atmospheric boundary layer flows under various conditions and
has been widely validated in many studies e.g. on the turbine dy-
namics [24], the control of wind farms [25,26] and the wind turbine
load in atmospheric flows [27]. During SOWFA simulations, the line-
of-sight scalar wind speed at specific spatial locations are extracted
to simulate the measurement process of the scanning LIDAR beams,
while the 3-D flow fields are recorded to provide ground truth for
method validations. The prediction results show that the proposed
method can reconstruct the 3-D spatiotemporal wind field (including
both wind magnitude and direction) in front of the wind turbine very
accurately based on only the scalar LIDAR measurements at sparse
spatial locations. In addition, as the deep learning model learns both
the spatial and temporal correlations of the evolving wind from NS
equations, a short-term wind forecasting without the commonly-used
Taylor’s frozen turbulence hypothesis [28] is also achieved.

The main contributions and novelties of this paper are summarized
as follows:

(1) The prediction of 3-D spatiotemporal wind field in front of
a wind turbine is achieved for the first time, by combining
3-D NS equations and scanning LIDAR measurements via
physics-informed deep learning. In particular, the whole 3-D
dynamic wind vector field is reconstructed using only the line-
of-sight LIDAR measurements at sparse spatial locations. Because
LIDAR devices are becoming widely available for modern wind
turbines, and, to the best of the authors’ knowledge, no other
works can achieve similar 3-D wind predictions, this work is
very useful in advancing other research fields including wind
turbine control & monitoring, wind resource assessment, and
wind power & load forecasting. The advantages of the wind
field reconstruction method proposed in this work compared
with existing works in the literature are summarized in Table 1.
We mention that other machine learning based wind prediction
works are not included in this table as they usually can only
discover wind information that is present in the training data,
while the objective of this paper is to discover the detailed wind
information that is not captured in the training data, via the
fusion of physics and ‘‘small’’ data.

(2) Instead of using pre-determined parameters for the NS equa-
tions [19], the proposed method treats the unknown param-
eters (i.e. the turbulent viscosity) in the NS equations as
training variables. In this way, the inference of the turbulent
viscosity is achieved which is very useful for other wind appli-
cations such as wind modeling and simulations. It also further
improves the performance of wind field reconstruction, as the
turbulence effects have been taken into account through the
turbulent viscosity.

(3) The proposed method is validated using large-scale high-
fidelity numerical experiments for a set of wind speed cases
ranging from below-rated, rated, to above-rated conditions
of typical wind turbines. The results show that the 3-D wind
vector (including the streamwise, spanwise and vertical velocity)
field is predicted accurately for all the cases. In particular, the

wind directions in the horizontal plane and vertical plane are
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Table 1
The advantages of the wind field reconstruction method proposed in this work compared with existing works in the literature.

Ref. Method Explicit model reduction Spatial feature Temporal feature

[15] low-order wind model + UKF Required 2-D Dynamic
[17,18] POD + CFD Required 2-D Static
[16] 2-D NS + UKF Required 2-D Dynamic
[19] 2-D NS + deep learning Not required 2-D Dynamic
this work 3-D NS + turbulent viscosity + deep learning Not required 3-D Dynamic
both predicted accurately, which is not trivial as only scalar
LIDAR measurements are used for the predictions. This demon-
strates that the proposed method can be applied to tackle yaw
misalignment and turbine tilt control simultaneously.

(4) The developed method can (i) infer the turbulent viscos-
ity; (ii) accurately capture the propagation and evolution
of the 3-D flow structures, i.e. the high/low speed zones;
(iii) accurately predict the vertical wind shear, which is of
great importance for various wind applications [21,22]; (iv)
accurately predict the undisturbed wind speed at specific
turbine blade locations, including the wind speed variation
due to both turbine rotations and spatially evolving turbu-
lence. This detailed blade-level wind prediction shows the great
potential of the proposed method in assessing turbine blade load
and its spatial variations, and in smart rotor design/control [29].

The remaining part of this paper is organized as follows: the spa-
tiotemporal wind field reconstruction problem is formulated in Sec-
tion 2. The physics-informed deep learning based method which com-
bines the 3-D NS equations and the LIDAR measurements is described
in Section 3, where the deep NN structure and its training are given in
detail. The prediction performance of the developed method is evalu-
ated in Section 4, using high-fidelity large eddy simulations. Finally the
conclusions are drawn in Section 5.

2. Problem formulation

Currently, LIDAR devices are becoming widely available for modern
wind turbines. However, LIDAR can only measure the line-of-sight
(LoS) wind speed in the laser beam direction at sparse spatial locations
along the laser beams. As the incoming wind in real-world condition
is not uniform, the whole 3-D wind field in front of wind turbines
remains unknown. In order to bridge the gap between the limitation
of the current sensor technology and the need of detailed wind field
information, this work develops a method to achieve the reconstruction
of the whole 3-D spatiotemporal wind field in front of a wind turbine,
based on LIDAR measurements and 3-D NS equations.

An illustration of LIDAR measurements is given in Fig. 1, where the
LIDAR beams (colored in red) are shown in front of a wind turbine. At
a given time instant, the LIDAR beams can measure the LoS wind speed
at the discrete spatial locations (which are illustrated as the cross signs
in Fig. 1). The 3-D spatiotemporal wind field reconstruction problem
considered in this work states as, based on the LIDAR measurements
at these sparse locations during certain time period 𝑇 , how to predict
the wind velocity (including the wind velocity components in down-
wind, crosswind, and vertical directions) at every location in the 3-D
spatial domain in front of the wind turbine at every time instant. We
mention that this task is not achievable without taking flow physics
into account, as only scalar measurements (i.e. the LoS wind speed) at
sparse locations are available.

3. 3-D spatiotemporal wind field reconstruction method

A 3-D spatiotemporal wind field reconstruction method is proposed
in this section, where LIDAR measurements and 3-D NS equations are
combined via the physics-informed deep learning technique. The whole
reconstruction framework is demonstrated in Fig. 2. The NN structure
and its training are described in detail in the rest part of this section.
3

Fig. 1. The illustration of LIDAR measurements in front of a wind turbine.

3.1. Neural network structure

The whole NN structure includes three sub NNs i.e. the Base-NN,
the LIDAR-NN and the NS-NN, as shown in Fig. 2. The Base-NN is
first constructed, based on which the LIDAR-NN and the NS-NN are
then derived to incorporate LIDAR measurements and NS equations
respectively.

The Base-NN is constructed to approximate the mapping between
the spatiotemporal coordinates and the flow state variables. Denote
the spatiotemporal coordinates as 𝑋 = [𝑡, 𝑥, 𝑦, 𝑧] (representing the time
coordinate and the space coordinate in the 3-D Cartesian coordinate
system) and the flow state variables as 𝑌 = [𝑢, 𝑣,𝑤, 𝑝] (representing
the velocity components in the 𝑥, 𝑦, 𝑧 directions and the air pressure,
respectively), then the Base-NN, denoted as 𝐹 , can be expressed as

𝑌 = 𝐹 (𝑋;𝑊 ) (1)

where 𝑊 represents all the training variables in the Base-NN.
As the LIDAR can only measure the LoS wind speed in the LIDAR

beam direction, no training target of 𝑌 is available. The LIDAR-NN,
denoted as 𝐹𝜇 , is constructed to incorporate the LIDAR measurements.
As the mapping between the flow state variables to the LoS LIDAR
measurements depends on the direction of the LIDAR beam (which
depends on the LIDAR configurations and can also change with time
in the case of the scanning LIDAR), the LIDAR-NN takes two additional
NN inputs i.e. the elevation angle 𝜃 and the azimuth angle 𝜙 of the
LIDAR beam. Denote the NN input of 𝐹𝜇 as 𝑋𝜇 = [𝑋, 𝜃, 𝜙]. Denote the
NN output of 𝐹𝜇 as 𝑌𝜇 = [𝑢𝑙𝑜𝑠] which represents the projection of the
wind velocity vector in the LIDAR beam direction. Then the LIDAR-NN
can be expressed as

𝑌𝜇 =𝐹𝜇(𝑋𝜇 ;𝑊 )

=𝐹 (𝑋;𝑊 )[1] cos(𝜃) − 𝐹 (𝑋;𝑊 )[2] sin(𝜃) sin(𝜙)

− 𝐹 (𝑋;𝑊 )[3] sin(𝜃) cos(𝜙). (2)

As LIDAR only measures the wind information at sparse locations,
the whole 3-D dynamic flow field in front of the wind turbine re-
mains unknown. Here the NS-NN, denoted as 𝐹𝑛𝑠, is derived based on
the Base-NN to incorporate the NS equations which provide a very
good description of the wind dynamics. The derivation is based on
the physics-informed deep learning framework, a novel framework
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Fig. 2. The demonstration of the proposed 3-D spatiotemporal wind field reconstruction method based on the physics-informed deep learning technique.
for solving forward and inverse problems involving nonlinear PDEs.
The applications of physics-informed deep learning in various research
domains have seen great successes recently such as in the study of
vortex-induced vibrations [30], the discovery of hidden physics from
flow visualizations [31] and the analysis of blood flows [32], which
demonstrates the great advantage of combining physics (in terms of
PDEs) and data in various scenarios. In this work, for the wind field
reconstruction, the 3-D NS equations
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𝜕𝑥 𝜕𝑦 𝜕𝑧
Here 𝑅𝑒 is defined as 𝑈∞𝐷∕𝜈𝑒𝑓𝑓 with 𝐷, 𝑈∞, and 𝜈𝑒𝑓𝑓 representing
the turbine rotor diameter, the average freestream wind speed, and the
total effective viscosity respectively. The effective viscosity is defined
as 𝜈𝑒𝑓𝑓 = 𝜈𝑎𝑖𝑟 + 𝜈𝑡, where 𝜈𝑎𝑖𝑟 and 𝜈𝑡 are the kinematic viscosity of air
and the turbulent viscosity respectively. As the effective viscosity 𝜈𝑒𝑓𝑓
(thus 𝑅𝑒) is not known, it is treated as training variables and is inferred
through the training process. The NS equations are then used to form
the NS residue terms in the NS-NN. In particular, the differential terms
in the NS equations are derived based on the Base-NN using automatic
differentiation [33]. For example, to incorporate the term 𝜕𝑢∕𝜕𝑥 in the
NS-NN, the gradient of 𝐹 (𝑋;𝑊 )[1] with respect to 𝑋[2], denoted as
𝜕𝐹1(𝑋,𝑊 )∕𝜕𝑋2, is derived using automatic differentiation. Other first-
order terms are obtained similarly. Then the higher-order terms are
obtained by the automatic differentiation of the lower-order terms. For
example, to incorporate the term 𝜕2𝑢∕𝜕𝑥2 in the NS-NN, the gradient of
𝜕𝐹1(𝑋,𝑊 )∕𝜕𝑋2 with respect to 𝑋[2] is derived. All the terms are finally
added to form the NS residue terms 𝑒𝑢(𝑋; [𝑊 , 1∕𝑅𝑒]), 𝑒𝑣(𝑋; [𝑊 , 1∕𝑅𝑒]),
𝑒𝑤(𝑋; [𝑊 , 1∕𝑅𝑒]) and 𝑒𝑑𝑖𝑣(𝑋;𝑊 ). Denote the NN input and the NN
output of 𝐹𝑛𝑠 as 𝑋𝑛𝑠 = [𝑡, 𝑥, 𝑦, 𝑧] and 𝑌𝑛𝑠 = [𝑒𝑢, 𝑒𝑣, 𝑒𝑤, 𝑒𝑑𝑖𝑣], the NS-NN
can then be expressed as

𝑌𝑛𝑠 = 𝐹𝑛𝑠(𝑋𝑛𝑠; [𝑊 , 1∕𝑅𝑒]). (3)

As can be seen from the above construction process, the Base-NN, the
LIDAR-NN and the NS-NN share the same training variables 𝑊 . The
training of the whole NN involves the updating of 𝑊 and 1∕𝑅𝑒 to
minimize the NN loss function, which will be described in detail in the
next subsection.
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Fig. 3. The illustration of the flow domain for the numerical simulations, where the
contour shows the instantaneous wind velocity field.

3.2. Neural network training

After constructing the whole NN structure, the loss function needs
to be specified for the NN training. In order to train the NN such that
it satisfies the constraints imposed by the NS residue terms and fits the
LIDAR measurements simultaneously, the loss function is specified to
consist of two parts. The first part is defined as
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𝑖 ], 1 ≤ 𝑖 ≤ 𝑁𝜇} are the LIDAR measure-

ment data with each sample consisting of the time coordinate, the
measurement location, the elevation angle, the azimuth angle, and the
5

corresponding value of the LoS wind speed measured by LIDAR. The
second part is defined as

𝐿2(𝑊 , 1∕𝑅𝑒) = 1
𝑁𝑛𝑠

𝑁𝑛𝑠
∑

𝑖=1
|𝐹𝑛𝑠(𝑡𝑛𝑠𝑖 , 𝑥𝑛𝑠𝑖 , 𝑦𝑛𝑠𝑖 , 𝑧𝑛𝑠𝑖 ; [𝑊 , 1∕𝑅𝑒])|2 (5)

where {[𝑡𝑛𝑠𝑖 , 𝑥𝑛𝑠𝑖 , 𝑦𝑛𝑠𝑖 , 𝑧𝑛𝑠𝑖 ], 1 ≤ 𝑖 ≤ 𝑁𝑛𝑠} are the randomly-sampled
spatiotemporal coordinates corresponding to the spatial domain in front
of the wind turbine. It is at these spatiotemporal coordinates that the
NS constraints are enforced. The loss function is then defined as

𝐿(𝑊 , 1∕𝑅𝑒) = 𝐿1(𝑊 ) + 𝐿2(𝑊 , 1∕𝑅𝑒). (6)

Finally, the proposed NN structure is trained to minimize the loss
function 𝐿(𝑊 , 1∕𝑅𝑒), by updating the training variables 𝑊 and 1∕𝑅𝑒.
In this work, the Adam algorithm [34] is employed for the NN training.

After the NN training, 1∕𝑅𝑒 (thus the effective viscosity 𝜈𝑒𝑓𝑓 ) can
be obtained and the Base-NN can be used for the prediction of the
wind velocity vector at a given location in front of the wind turbine
and a given time instant. The whole wind field at a given time instant
can thus be obtained by first generating a 3-D mesh corresponding to
the flow domain in front of the turbine and then propagating the 3-
D mesh through the Base-NN. Furthermore, because the deep learning
model learnt the spatiotemporal correlation of the wind field from the
NS equations, future time instant can be directly fed into the Base-
NN for predictions. Therefore, the proposed method can also achieve a
short-term wind forecasting without the commonly-used Taylor’s frozen
turbulence hypothesis. The detailed training and prediction procedure

is summarized in Appendix A.
Fig. 4. The 3-D velocity field (visualized in 𝑥-𝑦 and 𝑥-𝑧 planes) predicted by the proposed method at time (a) 𝑡 = 60 s, (d) 𝑡 = 70 s and (g) 𝑡 = 80 s. The corresponding ground
truth and the difference between prediction and true flow fields are shown in (b, e, h) and (c, f, i), respectively.
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Fig. 5. The 3-D velocity field (visualized in 𝑦-𝑧 planes) predicted by the proposed method at time (a) 𝑡 = 60 s, (d) 𝑡 = 70 s and (g) 𝑡 = 80 s. The corresponding ground truth and
the difference between prediction and true flow fields are shown in (b, e, h) and (c, f, i), respectively.
4. Results

The proposed wind field reconstruction method is evaluated in
this section, by using high-fidelity numerical experiments. The simu-
lation details and the prediction results are presented in the following
subsections.

4.1. Simulation setups

The numerical experiments are carried out using the high-fidelity
large eddy simulation solver SOWFA [23], which has been widely
validated and used for simulating atmospheric boundary layer flows
and wind farm wake flows [24,25]. More details regarding the sim-
ulation validations and comparisons can be found in [26]. For the
simulations in this work, a 3-D mesh of 250 × 250 × 83 is generated in a
3 km×3 km×1 km flow domain, so that the atmospheric boundary layer
flows can be captured correctly [24]. The corresponding flow domain
is illustrated in Fig. 3, where the contour shows the instantaneous wind
velocity field. For all the wind conditions considered in this work,
simulations of 20000 s are first carried out with a time step of 0.5 s
in order to establish the quasi-equilibrium flow state which will be
used as the initial flow field for the subsequent simulations. Then the
simulations of 400 s with a time step of 0.02 s are carried out where the
whole 3-D wind velocity field (including the wind speed in the 𝑥, 𝑦, 𝑧
directions at every spatial location) is recorded during the last 100 s
simulations. The recorded wind field data is not used for training the
developed machine learning model and it is only used as the ground
truth for method validations. All the simulations are carried out using
256 CPU cores on local high-performance computing clusters and each
case requires around 17 h for the total simulations of 20400 s.
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In addition, a virtual LIDAR device is added to extract the LoS wind
speed at the LIDAR measurement locations. In particular, five LIDAR
beams, with the measurement frequency of 1 s, the spatial resolution of
20 m and the measurement range of 220 m, are included in the virtual
measurement process. One of five beams is configured towards the
turbine yaw direction i.e. the elevation angle equal to 0◦. The other four
are configured with an elevation angle of 15◦ and uniformly-distributed
azimuth angles (i.e. the four beams are uniformly distributed in the
cone surface as illustrated by the red lines in Fig. 1). Furthermore, the
virtual LIDAR beams are designed to scan over the azimuth direction
in order to provide the wind information with better spatial coverage.

In the following subsections, the wind field prediction at a baseline
case is first investigated, where the freestream wind speed is set as
8 m∕s (which corresponds to a Reynolds number of 4.8 × 107) and the
freestream turbulence intensity is set as 6%, then a parametric study is
carried out to evaluate the performance of the developed method for a
set of wind speeds i.e. 13 m∕s, 18 m∕s, and 23 m∕s.

4.2. Prediction results and discussions

The LIDAR measurement data, which is described in Section 4.1,
is used to train the proposed deep learning model. In this work, the
structure of the Base-NN is set as 4-128-128-128-128-128-128-128-4
with the hyperbolic tangent activation for the intermediate layers and
the linear activation for the last layer. The learning rate of the Adam
optimizer is set as 10−4. The training is carried out using NVIDIA
Tesla K80 GPU and each training iteration requires around 0.14s,
which illustrates the ability of the proposed approach for real-time
3-D dynamic wind field reconstruction through offline training and
online updating. The scanning speed of the LIDAR beams in the azimuth
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Fig. 6. The profile of the effective wind speed predicted by the proposed method (the dashed lines) and the corresponding true values (the solid lines), at 𝑥0 = [−50,−10, 30, 70, 110] m
and various time instants. The mean values and the standard deviations of the prediction errors during the considered time period are also shown.
Table 2
The estimation of the effective viscosity by the proposed method.

Effective viscosity Turbulent viscosity ratio

0.2 m2/s 2.0 × 104

direction still needs to be specified. In this work, the scanning speed is
determined by trial and error and is set as a constant value of 15 ◦∕s.

After training, the effective viscosity is obtained. The results are
given in Table 2, along with the turbulent viscosity ratio i.e. the
ratio between the turbulent viscosity and the air viscosity. The results
clearly show that the turbulent wind is characterized primarily by the
turbulent viscosity, as the effective viscosity is much larger than the air
viscosity. As the turbulent viscosity can be used to describe the wind
turbulence, it is very useful for other wind applications such as wind
modeling and simulations. For example, it can be used to specify the
turbulent inflow conditions for numerical simulations of wind turbine
wakes.

Next, the whole spatiotemporal 3-D flow field is predicted. The
results for three typical time instants are given in Figs. 4 and 5, where
the corresponding ground truth and error distribution are also included.
Fig. 4 shows the visualizations of the wind speed magnitude in the 𝑥-𝑦
plane at the hub height and in the 𝑥-𝑧 plane, while Fig. 5 shows the flow
visualizations in the 𝑦-𝑧 plane at various streamwise locations. As can
7

be seen from Fig. 4, the flow structures (e.g. the high-speed/low-speed
flow zones) in both 𝑥-𝑦 and 𝑥-𝑧 planes are predicted very accurately.
The wind features in the vertical direction, such as the wind shear
(e.g. the increase of the wind speed with height), are also captured very
well. As can be seen from Fig. 5, the flow fields in the 2-D domain
parallel to the rotor plane are predicted very accurately at various
streamwise locations before the turbine. This demonstrates that the
proposed method can provide detailed preview wind information for
the whole 2-D rotor plane, which is of great importance for the control
of wind turbines especially in the case of smart rotors [29]. The error
distribution further shows that the prediction errors remain very small
for the whole flow domain of interest. The maximum error happens
at the locations that are far away from (thus of little importance for)
the turbine structures, which is reasonable as no measurements are
available in the vicinity of these locations. In addition, the unsteady
flow visualizations including both the ground truth and the prediction
results are given in the supporting material of this paper (see Video 1
& 2). As shown in the videos, the predicted flow field matches with
the ground truth very well, demonstrating that the proposed approach
captures the 3-D spatial variation and the temporal evolution of the
incoming turbulent wind successfully. The results fully reveal the great
performance of the proposed approach.

To further quantify the prediction accuracy, the root mean square
error (RMSE) of the flow field prediction is calculated, which is defined
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Table 3
The RMSEs of the flow field predictions for a set of wind speed cases ranging from
below-rated, rated, to above-rated conditions of typical wind turbines.

Case Quantity Value range RMSE (% of range)

8 m/s

𝑢 (m/s) [6.08, 10.11] 0.263 (6.5%)
𝑣 (m/s) [−1.82, 1.53] 0.397 (11.9%)
𝑤 (m/s) [−1.48, 1.36] 0.361 (12.7%)
𝛾𝑦 (◦) [−11.4, 11.8] 2.84 (12.2%)
𝛾𝑧 (◦) [−10.1, 9.77] 2.58 (13.0%)

13 m/s

𝑢 (m/s) [9.53, 16.07] 0.592 (9.1%)
𝑣 (m/s) [−2.89, 2.90] 0.625 (10.8%)
𝑤 (m/s) [−2.53, 2.56] 0.590 (11.6%)
𝛾𝑦 (◦) [−12.6, 12.4] 2.76 (11.0%)
𝛾𝑧 (◦) [−10.3, 10.9] 2.60 (12.3%)

18 m/s

𝑢 (m/s) [13.14, 21.62] 0.958 (11.3%)
𝑣 (m/s) [−4.18, 4.47] 0.837 (9.7%)
𝑤 (m/s) [−4.04, 3.50] 0.774 (10.3%)
𝛾𝑦 (◦) [−11.9, 14.9] 2.73 (10.2%)
𝛾𝑧 (◦) [−12.1, 12.1] 2.52 (10.4%)

23 m/s

𝑢 (m/s) [16.53, 28.44] 1.296 (10.9%)
𝑣 (m/s) [−4.57, 5.79] 1.098 (10.6%)
𝑤 (m/s) [−4.82, 5.12] 1.036 (10.4%)
𝛾𝑦 (◦) [−11.2, 12.8] 2.72 (11.3%)
𝛾𝑧 (◦) [−11.7, 13.1] 2.57 (10.4%)

as

𝜖𝑞 =
1
𝑇

𝑇
∑

𝑡=1

√

√

√

√
1

𝑁𝑡𝑒𝑠𝑡

𝑁𝑡𝑒𝑠𝑡
∑

𝑖=1
(𝑞∗𝑥𝑖 ,𝑦𝑖 ,𝑧𝑖 ,𝑡 − 𝑞𝑥𝑖 ,𝑦𝑖 ,𝑧𝑖 ,𝑡)

2. (7)

Here the total time 𝑇 is 100, {[𝑥𝑖, 𝑦𝑖, 𝑧𝑖], 1 ≤ 𝑖 ≤ 𝑁𝑡𝑒𝑠𝑡} is the grid points
corresponding to the 12 m × 12 m × 12 m uniform mesh in the 3-D
flow domain in front of the wind turbine, and 𝑞 represents the flow
quantity such as the wind velocity components in 𝑥, 𝑦 and 𝑧 directions
(i.e. 𝑢, 𝑣, 𝑤). 𝑞∗ and 𝑞 represent the true value and the corresponding
predicted value of 𝑞. The results are given in Table 3. As can be seen,
the predictions for the streamwise velocity 𝑢, the spanwise velocity
𝑣 and the vertical velocity 𝑤 are all quite accurate, with the RMSEs
equal to 6.5%, 11.9%, and 12.7% of the corresponding value ranges.
Furthermore, the directional information of the wind velocity can also
be predicted, by first projecting the 3-D velocity vector to the 2-D plane
and then calculating the angle between the 2-D vector and the reference
direction. The directions of the wind vector projected in 𝑥-𝑦 and 𝑥-𝑧
planes, at any given location, can be calculated by

𝛾𝑦 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑣∕𝑢) (8)

and

𝛾𝑧 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑤∕𝑢). (9)

The RMSEs of the 𝛾𝑦 and 𝛾𝑧 fields are also included in Table 3. As
shown, 𝛾𝑦, which is actually the conventional wind direction, is pre-
dicted correctly. This demonstrates that the proposed approach can be
used for tackling the yaw misalignment which is of great importance for
improving the efficiency of wind power generations [35]. The vertical
wind direction 𝛾𝑧 is also predicted correctly, which shows that the pro-
posed approach can be used for the control of turbine tilt angles [36].
It is concluded that the proposed method predicts the directional wind
information very well, given that only scalar information is available
in the original LIDAR measurements.

In addition, the 3-D spatiotemporal wind field reconstruction is also
carried out by using the pre-determined viscosity in the NS equations.
The prediction RMSEs are reported in Appendix B for comparisons with
Table 3. The results clearly demonstrate that by including and inferring
the effective viscosity in the proposed model, the present work achieves
better accuracy for all the flow quantities.

To further evaluate the prediction performance and to illustrate the
use of the proposed method for wind turbine control and wind power
8

& load forecasting, the 2-D wind field near the LIDAR, the effective
Table 4
The RMSEs of the flow field predictions near the LIDAR.

Quantity Value range RMSE (% of range)

𝑢 (m/s) [6.88, 9.44] 0.216 (8.4%)
𝑣 (m/s) [−1.57, 1.25] 0.392 (13.9%)
𝑤 (m/s) [−1.29, 1.24] 0.341 (13.5%)
𝛾𝑦 (◦) [−10.1, 9.89] 2.76 (13.8%)
𝛾𝑧 (◦) [−9.14, 8.55] 2.43 (13.7%)

wind speed, and the instantaneous wind speed at specific turbine blade
locations are extracted from the predicted full spatiotemporal wind
field and then compared with the corresponding true values in the
following parts.

First, the prediction of the 2-D wind field near the LIDAR (which
is located on turbine nacelle) is investigated. The prediction results are
given in Table 4. As shown, the prediction RMSEs remain very small
for all the main wind quantities including the wind velocity magni-
tudes and directions. The corresponding unsteady flow visualizations
including both the ground truth and the prediction results are given
in the supporting material of this paper (see Video 3). As shown in
the video, the spatiotemporal wind evolution in this region is predicted
very accurately.

Second, the effective wind speed, which is defined here as the wind
speed averaged over the y direction, is calculated as

�̄�𝑥0 ,𝑡(𝑧) =
1
𝑁𝑦

𝑁𝑦
∑

𝑖=1
�̂�𝑥0 ,𝑦𝑖 ,𝑧,𝑡, (10)

where {𝑦𝑖, 1 ≤ 𝑖 ≤ 𝑁𝑦} is a set of uniformly-distributed 𝑦 coordinates in
the interval [−30, 30] m. We mention that the effective wind speed is de-
fined here as the wind speed averaged only over the y direction instead
of over the 𝑦-𝑧 rotor plane, because in this way the wind speed variation
in vertical direction can be shown clearly. The results are given in Fig. 6
for several streamwise locations i.e. 𝑥0 = [−50,−10, 30, 70, 110] m. As
shown, the profiles of the effective wind speed are predicted accurately
at all the streamwise locations and all time instants. The wind shear,
i.e. the increase of the wind speed magnitude with height, is captured
very well.

Third, the instantaneous wind speeds at the turbine blade root, 1∕4
chord length, 1∕2 chord length, 3∕4 chord length and the blade tip
are predicted and compared with the corresponding ground truth. For
illustration purpose, here the rotational speed of the wind turbine is
set as 60 ◦∕s, and the variable rotational speed can be applied in the
same way. The results are given in Fig. 7. As shown, the time series of
the wind speed are predicted very accurately, including both the slow
variations due to the freestream flow structures and the fast variations
due to the turbine rotations. In particular, the effect of the wind shear
increases clearly from the blade root to the blade tip location, as shown
by the increase of the oscillation magnitudes from Fig. 7(a) to 7(e).
The magnitudes of wind speed oscillations, which are modulated by the
incoming turbulent wind and differ for each turbine rotation period, are
also predicted accurately. In addition, the mean values and the standard
deviations of the prediction errors during the considered time period
are shown in Fig. 7(f). As shown, the prediction errors are very small
for all the locations. It is also interesting to note that the prediction
errors increase slowly from the turbine blade root to the blade tip
locations, as the wind speed varies more dramatically from the blade
root to tip locations thus making the prediction increasingly difficult
from Fig. 7(a) to 7(e).

Next, as the proposed deep learning model learns the temporal
correlations of the wind field from the NS equations, it can be used
directly for short-term wind forecasting. This is achieved by directly
feeding future time coordinates to the Base-NN. The results for 15 s-
ahead wind speed forecasting are included in Fig. 7. Another 15 s
numerical simulations are also carried out by SOWFA to obtain the

corresponding ground truth for comparisons. As shown by the last 15 s
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Fig. 7. The instantaneous wind speeds predicted by the proposed method (the dashed lines) and the corresponding true values (the solid lines), at (a) the turbine blade root,
(b) 1∕4 chord length, (c) 1∕2 chord length, (d) 3∕4 chord length, and (e) the blade tip. Subfigure (f) shows the mean values and the standard deviations of the prediction errors

during the considered time period.
time series in Fig. 7, the forecasting results match with the true values
quite well. We mention that the proposed method does not need any
prior parameter tunings to determine the forecasting time horizon. The
forecasting can be achieved with good accuracy as long as the wind
speed at the location and the time instant of interest is correlated
with the available LIDAR measurement data. In practice, the maximum
forecasting time horizon can be estimated as the virtual time of the
flow convection from the upstream measurement points to the turbine
location.

4.3. Sensitivity of prediction accuracy to wind speed

The above results show great accuracy of the proposed wind pre-
diction method at the baseline case. To further validate the proposed
method’s performance, this subsection is devoted to the 3-D spatiotem-
poral wind field predictions for a set of wind speed cases, i.e. 13 m∕s,
18 m∕s, and 23 m∕s.

First, the prediction RMSEs are calculated and the results are given
in Table 3. As can be seen, for all the cases, the proposed method
achieves the accurate prediction of the wind velocity fields for all
the flow quantities including both wind magnitudes and directions.
Then, the unsteady 3-D flow field visualizations are compared with
the corresponding ground truth. The results are given in the supporting
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material of this paper (see Video 4). Similar to the baseline case, the 3-D
spatial variation and the temporal evolution of the turbulent wind are
predicted very accurately for all these cases. Also, we mention that all
the parameters involved in the model construction and training process
are the same as the baseline case, showing that parameter tuning is not
needed for different wind speed scenarios. This parametric study thus
fully demonstrates the great accuracy and robustness of the proposed
method.

5. Conclusions

The 3-D spatiotemporal wind field reconstruction was investigated
in this work, where a physics-informed deep learning based method
was proposed to combine the 3-D Navier–Stokes equations and the
scanning LIDAR measurements. The results showed that, by combining
the physics and data, the whole 3-D dynamic wind velocity vector
field (including the velocity components in 𝑥, 𝑦, and 𝑧 directions) in
front of the wind turbine was predicted very accurately based on only
the limited scalar information at very sparse spatial locations (i.e. the
line-of-sight wind speed measured by LIDAR beams). In addition, the
inference of the turbulent viscosity was also achieved, which can be
used for characterizing the wind turbulence in other applications such
as wind modeling and numerical simulations of wind turbine wakes.
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The 3-D wind field predictions were first examined by visualizing
the flow fields in 𝑥-𝑦, 𝑥-𝑧, and 𝑦-𝑧 planes. The results showed that the
spatiotemporal flow field predicted by the proposed approach matched
with the corresponding ground truth very well, where the 3-D spatial
variation of the incoming wind (such as the evolving flow structures
and the vertical wind shear) was successfully predicted. The predic-
tion accuracy was then quantified by the RMSEs of the reconstructed
spatiotemporal wind fields. The RMSEs at the baseline case were only
0.263 m∕s, 0.397 m∕s, 0.361 m∕s for the streamwise velocity 𝑢, the
spanwise velocity 𝑣, and the vertical velocity 𝑤, demonstrating the
great accuracy of the proposed method. To the best of the authors’
knowledge, this is for the first time that this type of accurate and
detailed predictions of the unsteady 3-D wind field in front of a wind
turbine is achieved. Furthermore, the directional wind information,
including the conventional wind direction (i.e. the wind direction in
the 𝑥-𝑦 plane) and the vertical wind direction (i.e. the wind direction
in the 𝑥-𝑧 plane), was also predicted. The results showed that the
RMSEs were only 2.84◦ and 2.58◦ respectively, demonstrating the great
potential of the proposed method in tackling yaw misalignment and
turbine tilt control, which are of great interest in improving the energy
capture efficiency of wind turbines. For example, the field test in [37]
showed that the annual energy production could be increased by 2.4%
by applying yaw corrections, and the study in [36] showed that turbine
tilt control has a great impact on the power generation of wind farms.
Furthermore, a parametric study was carried out for a set of wind
speed cases ranging from below-rated, rated, to above-rated conditions
of typical wind turbines. The results showed that the predicted 3-D
spatiotemporal wind field matched well with the corresponding ground
truth for all the cases, demonstrating the great accuracy and robustness
of the proposed method.

The predicted wind field is of vital importance for wind energy
applications e.g. wind turbine control design to further increase the
power generation efficiency, accurate forecasting of wind power to
assist its grid integration, and detailed and reliable wind resource
assessments. To illustrate these points, the 2-D wind field near the
LIDAR, the effective wind speeds at various streamwise locations, and
the instantaneous wind speeds at various turbine blade locations were
extracted from the predicted wind field and then compared with the
corresponding ground truth. The results showed that they were all
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predicted very accurately. In particular, the wind speed oscillations due
to the blade rotations and the variations of the oscillation magnitudes
at each rotation period due to the freestream turbulent wind were
both captured very well. The vertical wind shear was also predicted
accurately. Furthermore, a short-term wind forecasting was carried out
and the results showed that the accurate forecasting of the wind speeds
at various locations ranging from the turbine blade root to the blade tip
was achieved.

To further improve the prediction performance, future works in-
clude the design of the LIDAR configuration and its scanning pattern
to optimally arrange the measurement points, and the incorporation of
other flow sensors in the proposed method to provide more versatile
flow measurements.
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Appendix A. The detailed training and prediction procedure

The detailed training and prediction procedure of the proposed
method is summarized below as Algorithm 1.
Algorithm 1 The training and prediction procedure of the proposed method
1: % The training of the deep learning model
2: Load all the LIDAR measurement data of size 𝑁𝜇 , i.e. {[𝑡𝜇𝑖 , 𝑥

𝜇
𝑖 , 𝑦

𝜇
𝑖 , 𝑧

𝜇
𝑖 , 𝜃

𝜇
𝑖 , 𝜙

𝜇
𝑖 , 𝑢

𝜇
𝑖 ], 1 ≤ 𝑖 ≤ 𝑁𝜇}.

3: Initialize 1∕𝑅𝑒 with the 𝑅𝑒 number calculated based on air viscosity.
4: Set the batch size of the spatiotemporal coordinates for enforcing the NS constraints 𝑁𝑛𝑠.
5: Set the total number of training iterations 𝑁𝑡𝑜𝑡.
6: Set the learning rate 𝑙𝑟.
7: 𝑗 ← 1.
8: while 𝑗 ≤ 𝑁𝑡𝑜𝑡 do
9: Generate the spatiotemporal coordinates of size 𝑁𝑛𝑠 corresponding to the 3-D domain in front of the wind turbine, i.e. {[𝑡𝑛𝑠𝑖 , 𝑥𝑛𝑠𝑖 , 𝑦𝑛𝑠𝑖 , 𝑧𝑛𝑠𝑖 ], 1 ≤

𝑖 ≤ 𝑁𝑛𝑠}.
10: Train the deep learning model to minimize the loss 𝐿(𝑊 , 1∕𝑅𝑒) with the learning rate of 𝑙𝑟, by feeding {[𝑡𝜇𝑖 , 𝑥

𝜇
𝑖 , 𝑦

𝜇
𝑖 , 𝑧

𝜇
𝑖 , 𝜃

𝜇
𝑖 , 𝜙

𝜇
𝑖 , 𝑢

𝜇
𝑖 ], 1 ≤ 𝑖 ≤ 𝑁𝜇}

and {[𝑡𝑛𝑠𝑖 , 𝑥𝑛𝑠𝑖 , 𝑦𝑛𝑠𝑖 , 𝑧𝑛𝑠𝑖 ], 1 ≤ 𝑖 ≤ 𝑁𝑛𝑠} to the neural network structure. The training variables are [𝑊 , 1∕𝑅𝑒].
11: 𝑗 ← 𝑗 + 1.
12: end while
13: The estimation of the effective viscosity is obtained based on the converged value of 1∕𝑅𝑒.

14: % The prediction of the 3-D spatiotempoal wind field
15: Specify a time coordinate 𝑡𝑡𝑒𝑠𝑡.
16: Specify a point cloud of size 𝑁𝑡𝑒𝑠𝑡 (i.e. {[𝑥𝑘, 𝑦𝑘, 𝑧𝑘], 1 ≤ 𝑘 ≤ 𝑁𝑡𝑒𝑠𝑡}) corresponding to the 3D flow domain in front of the wind turbine.
17: for k in [1, 2, . . . , 𝑁𝑡𝑒𝑠𝑡] do
18: Propagate [𝑥𝑘, 𝑦𝑘, 𝑧𝑘, 𝑡𝑡𝑒𝑠𝑡] through the Base-NN to predict 𝑢, 𝑣, and 𝑤 at the location [𝑥𝑘, 𝑦𝑘, 𝑧𝑘] at time 𝑡𝑡𝑒𝑠𝑡.
19: end for
20: The 3-D wind velocity field (including the components in the 𝑥, 𝑦, and 𝑧 directions) in front of the wind turbine at time 𝑡𝑡𝑒𝑠𝑡 is obtained by

combining the predictions at all the locations in the point cloud.
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Appendix B. The prediction results using pre-determined viscosity

The 3-D spatiotemporal wind field prediction at the baseline case
is also carried out by using pre-determined parameters (i.e. the air
viscosity) in the NS equations. The results are given in Table B.5.
Table B.5
The RMSEs of the flow field predictions at the baseline case, by using the
pre-determined viscosity.

Quantity Value range RMSE (% of range)

𝑢 (m/s) [6.08, 10.11] 0.276 (6.8%)
𝑣 (m/s) [−1.82, 1.53] 0.457 (13.6%)
𝑤 (m/s) [−1.48, 1.36] 0.364 (12.8%)
𝛾𝑦 (◦) [−11.4, 11.8] 3.25 (14.0%)
𝛾𝑧 (◦) [−10.1, 9.77] 2.61 (13.1%)

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.apenergy.2021.117390.
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