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A B S T R A C T

Wind farms’ power-generation efficiency is constrained by the high system complexity. A novel deep
reinforcement learning (RL)-based wind farm control scheme is proposed to handle this challenge and achieve
power generation optimization. A reward regularization (RR) module is designed to estimate wind turbines’
normalized power outputs under different yaw settings and uncertain wind conditions, which brings strong
robustness and adaptability to the proposed control scheme. The RR module is then combined with the deep
deterministic policy gradient algorithm to evaluate the optimal yaw settings for all the wind turbines within the
farm. The proposed wind farm control scheme is data-driven and model-free, which addresses the limitations
of current approaches, including reliance on accurate analytical/parametric models and lack of adaptability
to uncertain wind conditions. In addition, a novel composite learning-based controller for each turbine is
designed to achieve closed-loop yaw tracking, which can guarantee the exponential convergence of tracking
errors in the presence of uncertainties of yaw actuators. The whole control system can be pre-trained offline
and fine-tuned online, providing an easy-to-apply solution with enhanced generality and flexibility for wind
farms. High-fidelity simulations with SOWFA (simulator for offshore wind farm applications) and Tensorflow
show that the proposed scheme can significantly improve the wind farm’s power generation by exploiting a
sparse data set without requiring any wake model.
1. Introduction

Wind energy is one of the most important sustainable energy, and it
has become an essential source of global power generation. In 2019, it
accounted for 4.7% of the electricity usage worldwide, 15% in Europe,
and 20% in the UK. Recently, the development of wind farms is growing
drastically to harvest more wind power. However, wind farms’ power-
generation efficiency and economic benefits still severely suffer from
the high system complexities and uncertain environments as illustrated
in Fig. 1a, which shows a typical wind farm — Denmark’s Horns Rev
offshore wind farm. From Fig. 1a, one can see that the power exaction
process of an upstream wind turbine results in a wake behind it. This
wake has a reduced wind speed (compared with the free stream wind),
which therefore interferes with the downstream wind turbine’s power
exaction. This phenomenon is commonly mentioned as wake effect,
which has a significant influence on the total power production of wind
farms. For example, it results in a 20% loss on annual power production
of the Horns Rev offshore wind farm. Many studies have been carried
out to investigate wake effects. Ref. [1] studied the detailed wake aero-
dynamics of horizontal-axis wind turbines. Experimental investigation
of wake effects was presented in [2]. Ref. [3] characterized the wake
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effects considering yaw and pitch angles. A repowering optimization
method was designed in [4] under wake effects, and a hybrid wind-farm
model was presented in [5] by combining wake effects and stochastic
dependability.

Some wind farm optimization & control approaches have been
proposed to mitigate wake effects. A layout optimization method was
designed in [6] to improve wind farm generation under wake effects.
Vali et al. [7] proposed model predictive control (MPC) methods for
wind farms, aiming to minimize wake effects by adjusting the induction
factors for all turbines. Ref. [8] developed a surrogate deep-learning
model to replace the analytical flow field model and achieve induction
control via MPC. Another effective strategy to mitigate wake effects
is wake steering. To be specific, wake steering aims to manipulate
the wakes’ directions by judiciously adjusting the yaw angles of wind
turbines such that the wake effects on the downstream turbines can
be mitigated, as demonstrated in Fig. 1b and c. Though this control
strategy may reduce the outputs of upstream wind turbines, it can
increase the whole farm’s total power generation. However, due to
wake effects’ inherent stochastic features, accurately analysing the
mathematical relationship between the yaw settings and the resulting
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Fig. 1. Illustrations of the wind farm, wake effect, and wake steering. (a) A photo of Denmark’s Horns Rev Offshore Wind Farm, which shows a typical wind farm layout and the
wake effect. (b) An illustration of a wind farm without wake steering. (c) An illustration of a wind farm with wake steering.
wake effects is challenging and computationally complicated, and it is
even more challenging to design effective yaw control strategies upon
it. To address this issue, some elegant studies [9–11] developed or
employed simplified models for wake effects, and then utilized these
surrogate models to develop wind farm control strategies. Particularly,
a parametric wake model was developed in [9] to decide yaw offsets.
Ref. [10] extended the Jensen wake model [12] to achieve yaw control.
Another surrogate wake model was proposed in [11] for wake steering
and wind-farm power optimization. Nevertheless, the downside of this
type of approaches is that they are sensitive to unmodelled dynamics
and system uncertainties, and thus in practice the performance of
these model-based controllers can be quite different from the analytical
results. Due to these facts, model-free approaches for wind farm power
generation optimization become appealing alternatives.

Generally speaking, model-free control aims to achieve control ob-
jectives using only input & output data without requiring system mod-
els. Therefore, it has strong adapting abilities to the inherent complex
system dynamics and can handle challenging tasks that are difficult
to address by model-based methods. Though model-free control is
currently drawing worldwide attention, it is still in an embryonic stage,
in particularly designing model-free wind farm control methods is
an open problem. A notable attempt towards this end was presented
in [13,14], in which the Bayesian ascent (BA) approach was designed
and applied to wind farms. BA is built upon the Bayesian optimization
technique, aiming to search the optimal yaw settings through the
probability-distribution prediction with Gaussian regression. However
BA requires wind conditions maintaining steady during the searching
process. In addition, it is actually an open-loop strategy that relies on
free explorations of the whole state domain. Therefore, developing new
model-free closed-loop control methods with enhanced adaptability
and generality is needed to improve wind farms’ power generation. In
this paper, we achieve this goal through reinforcement learning (RL).

RL [15] is a cutting-edge research area that combines the merits of
multiple disciplines including control engineering, machine learning,
and statistics. Its fundamental principle is ‘‘trial and error’’, which
aims to iteratively improve control policies by judiciously evaluating
input & output data. A notable example of RL is the famous deep Q-
network (DQN) algorithm [16], which can achieve human-level control
in Atari and Go games. As an extension of DQN, the deep deterministic
policy gradient (DDPG) algorithm [17] can handle more complicated
problems with continuous control domains. Luo et al. employed RL
to handle output regulation problems [18] and zero-sum games [19].
Many other RL algorithms have been applied to different complex
systems, such as wind farms [20] and autonomous systems [21].

In this paper, a novel RL-based control method is designed to
optimize wind farms’ total power generation through wake steering.
2

One of the main technical barrier comes from the stochastic feature of
wind conditions, which makes the whole problem non-Markovian and
thus breaks RL’s fundamental assumption [15]. We design a reward
regularization (RR) module to address this issue, which can evaluate
the normalized increments of power production (compared with the
benchmark) under different yaw settings and wind conditions. RR
module maintains the essential Markovian property of the whole prob-
lem and brings the adapting abilities to our RL-based control method
regarding uncertain wind conditions. Then we embed the RR module
in DDPG to learn the optimal yaw settings for all the wind turbines in
the farm. Two deep neural-network (NN) structures, critic and actor,
are employed to approximate the value function and optimal control
policy. Finally, based on the result of RR-DDPG, a composite learning
(CL)-based controller is proposed to achieve closed-loop yaw tracking.

The novelty and main contributions of this paper are as follows.

• The wind farm’s power-generation efficiency can be significantly
improved via the proposed deep RL-based control approach. Dif-
ferent from relevant model-based wind farm control methods [9–
11], our design is data-driven and model-free, which is insensitive
to parameter uncertainties and unmodelled dynamics. Simulation
results show that our method can significantly improve the wind
farm’s total power production by 15% on average compared with
the benchmark.

• The proposed control scheme is application-oriented. (1) The
training and learning data (power output and yaw angle of each
turbine) are easy to collect. The proposed control scheme only
needs a sparse training dataset, which can be obtained at limited
sets of fixed yaw settings (e.g. 90 sets of data is sufficient in
the simulation study of this paper). Note that the data collec-
tion process of other RL-based methods usually requires ran-
domly and continuously varying the turbine yaw angles within
the whole farm, which is not realistic and might lead to fa-
tigue/damage to wind turbines. (2) The proposed control scheme
can be pre-trained offline and fine-tuned online, providing an
easy-to-implement solution with enhanced generality and flexibil-
ity for wind farms. These two points show that our method has
strong applicability to real wind farms.

• High-fidelity simulations with SOWFA (simulator for onshore/
offshore wind farm applications), a computational fluid dynamics
(CFD) solver developed by the National Renewable Energy Lab-
oratory (NREL) of US for the interaction between wind turbine
dynamics and fluid flows [22], are conducted for performance
validation. Specifically, large-eddy simulations for a wind farm in
a 3 km×3 km×1 km flow field are carried out, where the turbine
rotors are modelled by the actuator line method. We conduct 90
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sets of 1000-second large-eddy simulations with SOWFA to collect
offline training data for our RL algorithm built on Tensorflow.
Each set of simulation requires around 44 hours’ computation.
The control scheme is then fine-tuned online with the Tensorflow-
SOWFA pipeline. All the tests are carried out using 256 CPU cores
on high-performance computing clusters.

• The proposed method can adapt to uncertain wind conditions.
This is achieved via the specially designed reward regularization
module, which relaxes the requirement of wind speed measure-
ments and therefore brings strong robustness and adaptability to
the whole wind farm control system compared with most exist-
ing model-free methods [13,14,20] for wake steering and power
generation optimization of wind farms. In addition, the proposed
method can also ensure the closed-loop yaw tracking and the
exponential convergence of tracking errors under uncertainties of
yaw actuators.

The remainder of this paper is organized as follows. The wind farm
ontrol problem is formalized in Section 2. Then the RL-based control
ethod for wind-farm power optimization is designed in Section 3.
ind farm simulation models are introduced in Section 4. After that,

igh-fidelity closed-loop simulation results with SOWFA and Tensor-
low are provided in Section 5. Finally, we conclude the paper in
ection 6.

. Problem formalization

The wind farm control problem is introduced in this section. Assume
here are a total of 𝑛 wind turbines in a wind farm, denoted by  1,
 2, . . . ,  𝑛, respectively. Then the steady-state power production
of  𝑖 (denoted by 𝐸𝑖) follows [9–11,13,23,24]

𝑖 =
1
2
𝜌𝐴𝑖𝐶𝑖(𝛼𝑖, 𝛾𝑖)𝑈3

𝑖 (1)

where 𝜌 is the air density, 𝐴𝑖 is the rotor area of  𝑖, 𝐶𝑖 is the
power coefficient, and 𝑈𝑖 is the wind speed in front of  𝑖. The power
coefficient 𝐶𝑖 is decided by the induction factor 𝛼𝑖 and the yaw angle
offset 𝛾𝑖 (with respect to the wind direction). Under the condition 𝛾𝑖 = 0,
𝐶𝑖 satisfies

𝐶𝑖(𝛼𝑖, 0) = 4𝛼𝑖(1 − 𝛼𝑖)2 (2)

In model-based methods, corrections on (2) are commonly employed
to account for the effect of 𝛾𝑖 on 𝐶𝑖 when 𝛾𝑖 ≠ 0. A notable example is
given in [9]: 𝐶𝑖(𝛼𝑖, 𝛾𝑖) = 4𝛼𝑖(1−𝛼𝑖)2𝜂 cos(𝛾𝑖)𝑝, where 𝜂 and 𝑝 are constants
that should be decided by experiments.

Conventionally every turbine in a farm aims to maximize its own
power outputs, called greedy control strategy. It leads to a game
problem and the corresponding Nash equilibrium is 𝛼𝑖 = 1∕3 and 𝛾𝑖 = 0,
𝑖 = 1, 2,… , 𝑛. As illustrated in Fig. 1b and c, the greedy strategy ignores
the wake effects among turbines and cannot maximize the total power
production of the wind farm, i.e.

𝐸 =
𝑛
∑

𝑖=1
𝐸𝑖 =

𝑛
∑

𝑖=1

1
2
𝜌𝐴𝑖𝐶𝑖(𝛼𝑖, 𝛾𝑖)𝑈3

𝑖 (3)

In this paper, we aim to optimize 𝐸 by wake steering. To be specific,
he yaw angles of each turbine are continuously adjusted to mitigate
he wake effects on downstream turbines and improve their outputs
ccordingly, and the induction factors of turbines remain the same as
he greedy strategy.

Model-based control methods [9–11] usually build surrogate models
or wake effects, aiming to calculate 𝑈𝑖 based on the yaw setting
= [𝛾1, 𝛾2,… , 𝛾𝑛] and the free-stream wind speed 𝑈∞. In other words,

hey aim to analytically establish the mapping from 𝛾 and 𝑈∞ to 𝑈𝑖,
𝑖 = 1, 2,… , 𝑛, and then use it to evaluate and optimize the total power
output of the wind farm. However, as mentioned in the introduction,
these methods are sensitive to unmodelled dynamics and system un-
3

certainties, and in practice their performance can be quite different t
from the analytical results. To address this issue, in the next section,
a model-free deep RL-based control strategy is designed to optimize 𝐸.

In real-time control, after the reference yaw signal 𝛾𝑟 (for each
turbine  𝑖 in the farm) is provided by the RL algorithm, an additional
controller is required to achieve precise yaw tracking. In this paper,
we consider the yaw control system with the following Euler–Lagrange
form:

𝑀𝑖𝜔̇𝑖 + 𝐶𝑖(𝛾𝑖, 𝜔𝑖)𝜔𝑖 + 𝑔𝑖(𝛾𝑖) = 𝑢𝑖 (4)

where 𝛾𝑖 and 𝜔𝑖 = 𝛾̇𝑖 are the yaw angle and angular velocity of  𝑖,
𝑢𝑖 is the control input, 𝑀𝑖 is a positive constant, and 𝐶𝑖 and 𝑔𝑖 are
dynamical terms of the system. We mention that the model in (4)
can represent most of the yaw actuators such as the one used in the
NREL Flow Analysis Software Toolkit (FAST) [25]. Besides, it allows a
parameter affine representation for any 𝑥, 𝑦,𝑤, 𝑧 ∈ R:

𝑀𝑖𝑧 + 𝐶𝑖(𝑥, 𝑦)𝑤 + 𝑔𝑖(𝑥) = 𝑌𝑖(𝑥, 𝑦, 𝑧, 𝑤)𝜃 (5)

where 𝑌𝑖(𝑥, 𝑦, 𝑧, 𝑤) ∈ R1×ℎ is a regressor matrix, and 𝜃 ∈ Rℎ×1 is a
constant parameter vector. In practical engineering, a common scenario
is that one knows the lower/upper bounds of 𝜃, i.e. 𝜃𝑞,min < 𝜃𝑞 < 𝜃𝑞,max,
where 𝜃𝑞,min, 𝜃𝑞,max ∈ R and 𝜃𝑞 is the 𝑞th entry of 𝜃, while the accurate
value of 𝜃 is unavailable for controller design. Based on these facts, a
novel adaptive controller is also designed in the next section to achieve
precise yaw tracking and parameter estimation for each turbine.

3. Deep RL-based wind farm control

A deep RL-based wind farm control method is proposed in this
section. It contains three main parts. First, an RR module is designed to
evaluate the normalized reward signals based on different yaw settings
and wind conditions. Then it is embedded in DDPG to learn the optimal
yaw settings. Finally, based on the outputs of RR-DDPG, a composite-
learning based controller is designed to achieve precise parameter
estimation and closed-loop yaw tracking. The main framework of the
whole control system at both farm level and individual turbine level is
demonstrated in Fig. 2.

3.1. Reward regularization

Based on the analysis in the previous section, the total power output
𝐸 is related to the free-stream wind speed 𝑈∞ in front of the wind farm,
the yaw setting 𝛾𝑖 of every turbine, and also the time 𝑡, formalized by

𝐸 = 𝑓 (𝛾, 𝑈∞, 𝑡) (6)

where 𝛾 = [𝛾1, 𝛾2,… 𝛾𝑛]. Due to the stochastic and dynamic features of
wake effects, Eq. (6) is complicated and unknown for the controller
design. Besides, it also results in severe issues that block directly
employing 𝐸 as the reward signal in deep RL algorithms: (1) 𝑈∞ is time-
varying and introduces biases into 𝐸. In other words, the instantaneous
value of 𝐸 cannot accurately reflect the effect of the corresponding yaw
settings. (2) Wake effect is a dynamic phenomenon. This means 𝐸 is not
steady during the wake propagation process even under constant 𝛾 and
𝑈∞. Therefore, directly employing 𝐸 to build reward signals for deep
RL renders the whole problem non-Markovian.

A reward regularization process is designed in this subsection to
deal with these issues. As indicated by (1), though 𝑈∞ is unavailable for
controller design, the power outputs of front wind turbines (the most
upstream turbines in the farm, denoted by 𝐹𝑖 with a total number ℎ)
under the greedy control strategy can directly reflect the change of 𝑈∞:
𝐸𝑔𝐹𝑖 =

1
2𝜌𝐴𝐹𝑖𝐶𝐹𝑖 (

1
3 , 0)𝑈

3
∞. This fact motivates us to employ 𝐸𝑔𝐹 =

∑ℎ
𝑖 𝐸

𝑔
𝐹𝑖

or power normalization purpose. Besides, instead of employing the
nstantaneous power data, we use the mean power output during a
eriod to build reward signals. This design can effectively alleviate
he influence induced by the wake propagation process, making the
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hole problem quasi-Markovian. Considering these aspects, we define
he following regularized reward:

= 1
𝑡𝑎 ∫

𝑡+𝑡𝑎

𝑡
[

𝐸(𝜏)
𝜅𝑓

∑ℎ
𝑖 𝐸

𝑔
𝐹𝑖
(𝜏)

− 𝜅𝑟]d𝜏 (7)

where 𝑡𝑎 denotes the time period for averaging, and 𝜅𝑓 and 𝜅𝑟 are user-
defined gains for weighting and offsetting purposes. It is noteworthy
that the total power output 𝐸(𝜏) satisfies

(𝜏) =
𝑛
∑

𝑖=1
𝐸𝑖(𝜏)

and here 𝐸𝑖(𝜏) denotes the power output of turbine  𝑖 at time 𝜏.
ince 𝐸𝑖(𝜏) can be directly measured by each turbine  𝑖 in the

farm, 𝑖 = 1, 2,… , 𝑛, 𝐸(𝜏) can be calculated by summing up all 𝐸𝑖(𝜏)
together at any time 𝜏. Then the regularized reward 𝑅 can be calculated
accordingly.

Following (7), a NN structure is employed to estimate 𝑅 with offline
data for arbitrary yaw settings. As shown in Fig. 2, it contains two sub
NNs, SubNN.a and SubNN.b, and their designs are explained as follows.

(1) The input and output of SubNN.a are 𝛾𝐹𝑖 and 𝐸𝐹𝑖∕𝐸
𝑔
𝐹𝑖

, respec-
tively, where 𝐸𝐹𝑖 denotes the power production of 𝐹𝑖 under
the yaw setting 𝛾𝐹𝑖 . Therefore, the core function of SubNN.a is
to evaluate the influence of the yaw setting to the power output.
Based on SubNN.a, one can evaluate 𝐸𝑔𝐹𝑖 with 𝛾𝐹𝑖 and 𝐸𝐹𝑖 under
unknown wind conditions and then calculate 𝑅 accordingly.

(2) Based on the data set {𝛾, 𝑅}, SubNN.b carries out supervised
learning (with 𝛾 as the input and 𝑅 as the output label) to estimate
the regularized reward under any yaw setting.

3.2. Deep deterministic policy gradient

Generally, a reinforcement learning agent learns from its interac-
4

tions with environments rather than being directly guided, and it aims i
to iteratively improve its actions by judiciously evaluating past expe-
rience (exploitation) and making new decisions (exploration). Many
deep RL algorithms, e.g. DDPG [17], employ the so-called actor–critic
structure [15] as the main RL structure, with deep neural networks as
information processors and universal approximators. Particularly, the
critic network aims to capture core system information and estimate a
long-term reward function. In parallel, the actor aims to optimize the
reward function via the policy gradient strategy and improve the con-
trol policy iteratively. In this subsection, the RR module is embedded in
the DDPG algorithm to optimize the yaw settings and the corresponding
power production of the wind farm. The main mechanism of the DDPG
algorithm and the training principle of its actor–critic structure are
introduced first. After that, the wind farm control problem is moulded
into DDPG.

In general, DDPG aims to maximize the following cumulative re-
ward for an unknown system 𝑥(𝑘 + 1) = 𝐹 (𝑥(𝑘), 𝑢(𝑘)):

𝑢(𝑥(𝑘)) =
∞
∑

𝑖=𝑘
𝛽𝑖−𝑘𝑟(𝑥(𝑖), 𝑢(𝑥(𝑖))) (8)

ere 𝑥(𝑘) and 𝑥(𝑘+1) respectively denote an instant state (at time step
) and its successor state, 𝑢 is the control input, 𝑟 is the reward function,
nd 𝛽 is the discount factor. The optimal control policy 𝑢∗ satisfies
∗ = argmax

𝑢
{𝑉𝑢(𝑥(𝑘))} (9)

nd we denote the corresponding maximal cost function as 𝑉 ∗(𝑥(𝑘)) =
𝑢∗ (𝑥(𝑘)). From (8) and (9), an important property of 𝑉 ∗(𝑥(𝑘)) is
∗(𝑥(𝑘)) = 𝑟(𝑥(𝑘), 𝑢∗(𝑥(𝑘))) + 𝛽𝑉 ∗(𝑥(𝑘 + 1)) (10)

We note that it is very challenging to solve 𝑉 ∗ and 𝑢∗ analytically,
specially when the system model is nonlinear and unknown. Alterna-
ively, this problem can be addressed by iterative learning [15,26]. A
otable example is the so-called 𝑄-learning strategy [26], which can
teratively approximate 𝑉 ∗ and 𝑢∗ through policy evaluation and policy

mprovement.
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Policy Evaluation: Solve the unknown 𝑄-function 𝑄(𝑖)(𝑥(𝑘), 𝑎) by the
following equation,

𝑄(𝑖)(𝑥(𝑘), 𝑎) = 𝑟(𝑥(𝑘), 𝑎) + 𝛽𝑄(𝑖)(𝑥(𝑘 + 1), 𝑢(𝑖)) (11)

Policy Improvement: Update control policy by

𝑢(𝑖+1) = argmin
𝑎
𝑄(𝑖)(𝑥, 𝑎) (12)

with 𝑢(0) being an admissible control policy.
In (11), 𝑄(𝑖)(𝑥(𝑘), 𝑎) is called the action-state value function which

represents the long-term reward when action 𝑎 is taken at state 𝑥(𝑘) and
a control policy 𝑢(𝑖) is pursued thereafter. Under (11) and (12), it has
been proved that 𝑄(∞)(𝑥(𝑘), 𝑎) → 𝑟(𝑥(𝑘), 𝑎) + 𝛽𝑉 ∗(𝑥(𝑘)) and 𝑢(∞) → 𝑢∗.

However, directly implementing (11) and (12) still leads to un-
acceptable computational complexities, especially when the system
dimension is high. To address this issue, one can employ NNs to
approximate 𝑄∗ and 𝑢∗, which is the main principle of DDPG. Specif-
ically, DDPG has an actor–critic structure, in which the critic and the
actor are employed to estimate the action-state value function 𝑄∗ and
the optimal control policy 𝑢∗, respectively. To enhance the learning
performance, two sets of actor–critic are employed, i.e. the main actor–
critic and the target actor–critic. We denote the parameters of the main
actor, main critic, target actor and target critic by 𝜃𝜇 , 𝜃𝑄, 𝜃𝜇′ and 𝜃𝑄′ ,
respectively. Their outputs are 𝜇, 𝑄, 𝜇′ and 𝑄′, respectively.

The main structure and training process of DDPG is introduced in
Fig. 2, where a fixed-size memory buffer  (a queue structure with
a size of 𝑚) is employed to store the previous experiences (in term of
transactions) of the system. We denote the transactions stored in 
as {(𝑥𝑖, 𝑎𝑖, 𝑥+𝑖 , 𝑟𝑖)}𝑖=1,2,…,𝑚, where 𝑥𝑖 and 𝑥+𝑖 respectively denote a stored
state and its successor state (i.e. 𝑥(𝑘) and 𝑥(𝑘 + 1)), and 𝑎𝑖 and 𝑟𝑖 are
respectively the corresponding control action and reward at this time
step. Then, in the training process, a small batch of transitions (with a
size of 𝑏) are selected randomly from  at each step.

In the training process, we use the loss function 𝐿 = 1
𝑏
∑𝑏
𝑗=1 𝛿

2
𝑗 to

pdate the main critic network, where 𝛿𝑗 is the temporal-difference
TD) error of the 𝑗th sampled transition:

𝑗 = 𝑟𝑗 + 𝛽𝑄′[𝑥+𝑗 , 𝜇
′(𝑥+𝑗 |𝜃

𝜇′ )|𝜃𝑄
′
] −𝑄(𝑥𝑗 , 𝑎𝑗 |𝜃𝑄) (13)

This design is based on the property in (11). The reference value
of 𝑄(𝑥𝑗 , 𝑎𝑗 |𝜃𝑄) (i.e. 𝑟𝑗 + 𝛽𝑄′[𝑥+𝑗 , 𝜇

′(𝑥+𝑗 |𝜃
𝜇′ )|𝜃𝑄′ ]) is constructed by the

outputs of the target networks.
Following (12), the main actor aims to find the optimal control

policy based on 𝑄. This is achieved by the policy gradient strategy.
Specifically, at each training step, the gradient of 𝑄 with respect to 𝜃𝜇
is

∇𝜃𝜇 =1
𝑏

𝑏
∑

𝑗=1

𝜕𝑄(𝑥𝑗 , 𝜇(𝑥𝑗 |𝜃𝜇)|𝜃𝑄)
𝜕𝜃𝜇

=1
𝑏

𝑏
∑

𝑗=1
[∇𝜇𝑄(𝑥𝑗 , 𝜇(𝑥𝑗 |𝜃𝜇)|𝜃𝑄) ⋅ ∇𝜃𝜇𝜇(𝑥𝑗 |𝜃𝜇)]

(14)

Moreover, the target critic and actor slowly track their main coun-
terparts via soft replacement:

𝜃𝜇
′
← (1 − 𝜏)𝜃𝜇

′
+ 𝜏𝜃𝜇 , 𝜃𝑄

′
← (1 − 𝜏)𝜃𝑄

′
+ 𝜏𝜃𝑄 (15)

where 𝜏 ∈ (0, 1] is a user-defined constant. Recalling (13), this design
can help break the data correlations and enhance the overall training
stability.

Based on these design principles of DDPG, we are ready to mould
the wind farm control problem into it. Specifically,

• We employ the regularized power evaluated by the RR module
as the reward signal, i.e. 𝑟 = 𝑅. As discussed in Section 3.1,
this design can handle the non-Markovian issue induced by wake
delays.
5

• For the wind farm control problem considered in this paper, the
system state in DDPG is the yaw setting vector 𝛾 = [𝛾1, 𝛾2,… 𝛾𝑛]
of the whole farm, i.e. 𝑥 = 𝛾.

• The control action 𝑎 in DDPG is the change of the yaw angle
vector 𝛾 at every time step, which is bounded by a positive
constant 𝑏𝑎.

Remark 1. As indicated in Fig. 2, a memory buffer  is employed
in the deep RL algorithm to store previous experiences and collect new
experiences (in term of transactions) of the system. This memory buffer
has a first-in-first-out queue structure and a fixed size (denoted by 𝑚).
At every learning step, a small batch of transitions (with a size of 𝑏) are
uniformly randomly sampled from  to carry out deep NN training.
This sampling strategy is called experience replay [16,17], which can
break the temporal correlation of sequential transitions, catering to
the independent and identical distribution requirement in deep neural
network training and therefore enhancing learning stability.

3.3. Adaptive yaw tracking via composite learning

The output of RR-DDPG provides the reference yaw setting 𝛾𝑟 for
each wind turbine in the farm. As the final part of our control scheme,
a composite learning (CL)-based adaptive controller is designed in
this subsection to achieve yaw tracking. Compared with relevant stud-
ies [27–30], our method can ensure that the estimates of system
parameters are always within pre-determined bounds by employing a
specially designed projection law, which enhances the generality of our
CL-based controller.

For any wind turbine  𝑖 in the farm, we denote its reference yaw
angle and angular velocity by 𝛾𝑟 and 𝜔𝑟, respectively. Then we define
the error yaw angle and angular velocity of  𝑖 by 𝛾𝑒 = 𝛾𝑖 − 𝛾𝑟 and
𝜔𝑒 = 𝜔𝑖 − 𝜔𝑟, respectively. Recall (4), one has

𝛾̇𝑒 = 𝜔𝑒, 𝑀𝑖𝜔̇𝑒 = −𝑌𝑖(𝛾𝑖, 𝜔𝑖, 𝜔̇𝑟, 𝜔𝑖) + 𝑢𝑖 (16)

where 𝑌𝑖(𝛾𝑖, 𝜔𝑖, 𝜔̇𝑟, 𝜔𝑖) is the regressor matrix that follows
𝑌𝑖(𝛾𝑖, 𝜔𝑖, 𝜔̇𝑟, 𝜔𝑖)𝜃 = 𝑀𝑖𝜔̇𝑟 + 𝐶𝑖(𝛾𝑖, 𝜔𝑖)𝜔𝑖 + 𝑔𝑖(𝛾𝑖). Hereafter, for the sake
of brevity, arguments of matrix functions will be ignored. We note
that though 𝜃 is unknown, 𝑌𝑖 is available for controller design, and its
specific expression can be deduced by taking Jacobian of the right-hand
side of (6) with respect to 𝜃.

As mentioned in Section 2, we aim to achieve three objectives: (1)
Estimating the unknown parameter vector 𝜃; (2) During the estimation
process, keeping the estimate 𝜃̂ always within predetermined bounds
i.e. 𝜃𝑞,min < 𝜃̂𝑞 < 𝜃𝑞,max (𝜃̂𝑞 is the 𝑞th entry of 𝜃̂, 𝑞 = 1, 2,… , ℎ); (3)

ased on (1) and (2), achieving precise yaw tracking, i.e. 𝛾𝑒 → 0.
To achieve these objectives, a novel adaptive control method with

omposite learning is proposed. First, we consider the following pro-
ection law:

̂𝑞 = (𝜃𝑞,max − 𝜃𝑞,min)sig(𝜓̂𝑞) + 𝜃𝑞,min (17)

where sig(⋅) ∶ R → (0, 1) is the sigmoid function, defined by sig(𝑥) =
1∕(1 + e−𝜅𝑥), 𝑥 ∈ R, and here we set 𝜅 = 1 without loss of generality.
With (17), the estimation problem of 𝜃𝑞 in (𝜃𝑞,min, 𝜃𝑞,max) is transferred
to the estimation problem of a projected value 𝜓𝑞 over the entire real
domain, and we denote 𝜓̂ = [𝜓̂1, 𝜓̂2,… , 𝜓̂ℎ]T as the estimate vector of
𝜓 = [𝜓1, 𝜓2,… , 𝜓ℎ]T.

Based on these preliminaries, the CL-based adaptive controller is
summarized in the following theorem.

Theorem 1. Considering the tracking model in (16) and the projection law
in (17), design the control and adaptive laws as follows

𝑢𝑖 = −𝑘𝑝𝛾𝑒 − 𝑘𝑣𝜔𝑒 + 𝑌𝑖𝜃̂ (18)

̇̂ = −𝑘𝑦𝑌 T
𝑖 𝜔𝑒 − 𝑘𝑦𝑘𝑤

𝐿
∑

[𝑊 T
𝑖 (𝑡𝑙)𝑊𝑖(𝑡𝑙)𝜃̂ −𝑊 T

𝑖 (𝑡𝑙)𝑢𝑖(𝑡𝑙)] (19)

𝑙=1
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Fig. 3. Validation results of SOWFA from [31].
where 𝑘𝑝, 𝑘𝑣, 𝑘𝑦 and 𝑘𝑤 are user-defined positive constants, 𝑊𝑖 is a
regressor matrix that satisfies 𝑊𝑖𝜃 = 𝑀𝑖𝜔̇𝑖 + 𝐶𝑖𝜔𝑖 + 𝑔𝑖. Besides, 𝑡𝑙, 𝑙 =
1, 2,… , 𝐿, denotes some selected past-time points in real-time control, and
thus ∑𝐿

𝑙=1[𝑊
T
𝑖 (𝑡𝑙)𝑊𝑖(𝑡𝑙)𝜃̂−𝑊 T

𝑖 (𝑡𝑙)𝑢𝑖(𝑡𝑙)] stores the historical information of
the corresponding variables. Then, the tracking error 𝛾𝑒 and 𝜔𝑒 converge
to zero asymptotically, and the parameter estimate 𝜃̂𝑞 is always within the
predetermined bound, i.e. 𝜃̂𝑞 ∈ (𝜃𝑞,min, 𝜃𝑞,max). Moreover, if proper online
data are collected such that ∑𝐿

𝑙=1𝑊
T
𝑖 (𝑡𝑙)𝑊𝑖(𝑡𝑙) is full-rank, then 𝛾𝑖, 𝜔𝑖 and

𝜃 exponentially converge to zero. Here 𝜃 = 𝜃̂ − 𝜃 denotes the parameter
estimation error.

Proof. See Appendix.

Remark 2. The deep RL-based wind farm control system developed
in this paper has the ability to handle the uncertainties in real-time
operating conditions of wind farms. Firstly, the ‘pre-trained offline,
fine-tuned online’ mechanism ensures a stable learning process and
enables our control system to adapt to the mismatch between the
offline training environment and the real-time operating environment.
Secondly, the specially designed reward regularization module can
evaluate the greedy-mode power outputs of the front wind turbines
in the farm and employ them to normalize the reward function. This
allows the whole algorithm to have adaptability and robustness to the
uncertain wind conditions in practical use. Finally, as strictly proved in
Theorem 1, the composite-learning adaptive yaw controller proposed
in this paper can achieve high-performance real-time yaw tracking for
each turbine even in the presence of parameter uncertainties.

4. Wind farm simulation models

In this work, we employ the high-fidelity computational fluid dy-
namics (CFD) model SOWFA (Simulator for Onshore/Offshore Wind
Farm Applications) [22] developed by the National Renewable Energy
Laboratory (NREL) of US to carry out simulations and test our deep
reinforcement learning-based control algorithm. Before presenting the
simulation results in the next section, we discuss the capability of
SOWFA and compare it with other wind farm simulation models in this
section. It should be emphasized that the deep reinforcement learning-
based wind farm control scheme proposed in this paper is data-driven.
It is independent of the testing/running environments and does not
require any analytical wake model or relevant parameters/conditions
to carry out its learning process. These important features are always
valid, no matter in simulation tests or in real operating conditions
6

Fig. 4. Illustration of different wind farm models.

of wind farms, and SOWFA is employed in this paper only for high-
fidelity numerical test and performance evaluation purposes instead of
algorithm designs.

SOWFA is able to perform large-eddy simulations (LESs) [32] for
wind fields, in which the wind turbines are modelled by the so-called
actuator line approach [33] coupled with the FAST (Fatigue, Aerody-
namics, Structures and Turbulence) toolkit [25] from NREL. As one
of the ‘‘best practices’’ methodologies and most popular models for
performing wind-farm LESs, SOWFA has been widely validated and
applied in various studies. Some notable examples include wind farm
designs and layout optimizations [34], analysis of wind-farm flow
fields [35], wind farm control validations [9,36] and model valida-
tions [9,37]. Particularly, Ref. [31] validated SOWFA with the actual
field data measured at the Lillgrund Wind Farm in Öresund, Sweden.
Their main results are given in Fig. 3 (Figs. 5 and 7 from [31]) for
easy reference. From Fig. 3b, one can see that SOWFA performs very
well in evaluating the power generation of wind turbines in the farm,
rendering a root mean square error less than 0.1 (in terms of normalized
power productions). It is noteworthy that comparing simulation results
with actual field data is very challenging, and public data of wind
farm fields are often binned by sparse wind directions and averaged
over a very long time [31]. Even under such harsh conditions, the
validation results in [31] still successfully show the high-fidelity and
high-accuracy features of SOWFA.
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Fig. 5. Simulation result of a six-turbine wind farm with FLORIS.

Fig. 6. Simulation result of a six-turbine wind farm with WFSim.

Generally, models for wind farm simulations can be divided into the
following categories as illustrated in Fig. 4:

• Steady-state models: This type of models usually evaluates the
time-averaged features of flow fields and wind farms while ig-
noring temporal dynamics, e.g. wake meandering. Such a design
principle can greatly reduce computational cost. But it also limits
the accuracy and fidelity of steady-state models. Examples of
popular steady-state models include FLORIS [9], Jensen [12] and
Ainslie [38].

• Medium-fidelity models: This type of models aims to make a
trade-off between computational complexity and fidelity. For
example, a recently developed model WFSim [37] employs two-
dimension Navier–Stokes equations instead of the full three-
dimension Navier–Stokes equations (as employed by SOWFA)
to carry out medium-fidelity LESs for wind farms. This enables
WFSim to have less computational complexity than SOWFA while
achieving better accuracy than steady-state models. But its fi-
delity and accuracy are much lower than SOWFA. Another recent
example of medium-fidelity wind farm models is FAST.Farm [39].

• High-fidelity models: As mentioned earlier, high-fidelity simulation
models, such as SOWFA [22,32], usually conduct full-dimension
LESs with high spatial and temporal resolutions. They have the
highest level of accuracy and computational complexity. Such
computationally costly simulations allow the users to get detailed
results that reflect the actual wind fields well.

We choose three most-recent and popular models, one from each
category, for comparisons. They are FLORIS [9] (steady-state), WF-
Sim [37] (medium-fidelity), and SOWFA (high-fidelity) [22,32].

Firstly, the simulation result of a typical six-turbine farm with
FLORIS is given in Fig. 5. One can see that FLORIS only evaluates the
steady wakes and cannot provide details and temporal dynamics of the
flow field.

Secondly, we carry out simulation for a six-turbine wind farm with
WFSim. The result is illustrated in Fig. 6. One can see that WFSim can
provide more information than FLORIS. It shows more details of the
whole flow field with a medium resolution.

Finally, the simulation result with SOWFA is provided in Fig. 7.
It is obvious that SOWFA can provide much more flow-field details
7

Fig. 7. A 2D Illustration of the instantaneous flow field and wind farm simulated by
SOWFA.

than FLORIS and WFSim. Even small wind gusts are illustrated in
Fig. 7 with a high resolution. It is also noteworthy that SOWFA carries
out three-dimension LESs. The two-dimension instantaneous profile in
Fig. 7 is employed just for the ease of comparison with FLORIS and
WFSim. A three-dimension flow-field simulation domain with SOWFA
is illustrated in Fig. 8.

Due to the above merits, SOWFA has been a commonly-recognized
benchmark for wind farm model validations. For example, FLORIS
employed LES data generated by SOWFA to calibrate its parameters.
It was shown in [9] that, after calibrations, FLORIS could achieve
an around 5% mean absolute error in averaged power outputs when
compared with SOWFA. Moreover, Ref. [37] compared the wind speeds
of WFSim and SOWFA at the mean flow centrelines. They showed that
the mean absolute error between these two models was about 1 m/s at
the mean flow centrelines. Both FLORIS and WFSim employed these
quantitative validation results with respect to SOWFA as their core
evidence to show the accuracy, feasibility and applicability of their
modelling methods. One can refer to [9,37] for detailed quantitative
validation and comparison results.

All these facts, along with both qualitative and quantitative anal-
ysis, show that the SOWFA simulation model to be employed in the
case studies of this paper is state-of-the-art and has essential merits
compared with many other popular models in the literature. The high-
fidelity and high-accuracy features of SOWFA can significantly enhance
the applied value of our deep reinforcement learning-based wind farm
control method.

5. Numerical simulations

Based on the discussion in Section 4, SOWFA and TensorFlow are
employed to achieve high-fidelity wind farm simulations and test our
deep RL-based wind farm control method in this section. As illustrated
in Fig. 8, a 3 km × 3 km × 1 km flow field is considered. In order to
capture the detailed turbine wake dynamics, meshes of 3 m×3 m×3 m
are used around the turbine rotors, and the time step is set as 0.02 s.
A 2-dimension visualization of a instantaneous flow field is given in
Fig. 7. We consider a scenario in which six NREL 5MW wind turbines
(with a 3 × 2 layout) are embedded in this flow field, which are denoted
by black bars in the figure. The rotor diameter of these turbines is
𝐷 = 126.4 m. The distance between the turbines in the same row is
5𝐷, and the distance between the two rows is 3𝐷. Fig. 7 also illustrates
the simulation result under the greedy mode (i.e. 𝛾 ≡ 0, 𝑖 = 1, 2,… , 6).
𝑖
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Fig. 8. An Illustration of the 3D flow-field simulation domain with SOWFA. It shows a typical instantaneous vorticity contour coloured by velocity magnitude and also shows the
hub-height horizontal plane.
Fig. 9. The specific yaw settings for data collection.

It clearly shows that the downstream turbines are severely affected by
the wakes induced by the upstream turbines.

We employ the proposed deep RL-based control method to mitigate
this problem and improve power generation. Given the wind-farm
layout considered here, the wake effect between different rows is negli-
gible. Therefore one can consider the wake steering problem for a single
row of turbines and employ identical yaw settings for other rows. This
strategy can significantly reduce the whole algorithm’s computational
complexity, which has been utilized in many relevant studies such
as [9].

To generate the training data for our deep RL-based wind farm
control method, we conduct 90 sets of 1000-second large-eddy sim-
ulations with SOWFA. These simulation sets are evenly divided into
three groups (30 sets in each group) according to different free-stream
mean wind speeds (8 m/s, 9 m/s and 10 m/s, respectively). Each
set of simulation requires around 44 hours’ computation using 256
CPU cores. In each simulation, the yaw settings of all turbines are
decided within [−30, 30] deg using Latin hypercube sampling method.
From a standpoint of practical engineering, collecting data by randomly
and continuously varying the turbine yaw angles (like other RL-based
8

Fig. 10. Learning results of the RR module. (a) Learning performance of SubNN.a. (b)
Learning performance of SubNN.b.

methods usually do) is not realistic and might lead to fatigue/damage to
wind turbines. Thus in each 1000-second simulation, the turbines’ yaw
settings are fixed. The specific yaw settings are shown in Fig. 9. The
greedy-mode simulations are also conducted for comparison purposes.
The following results will show that our deep RL-based wind farm
control method can achieve power generation optimization under such
a sparse dataset collected by SOWFA. These results indicate that our
method can use limited sets of actual wind farm data for algorithm
training and learning purposes, and has strong applicability to real
wind farms.

The training dataset is fed into the RR module. The SubNN.a and
SubNN.b in the RR module are two fully connected NNs, and their
neural structures are 1-20-20-1 and 3-32-32-1, respectively. Besides,
we set 𝜅𝑓 = 1 and 𝜅𝑟 = 1.5. As mentioned in Section 3.1, SubNN.a
aims to evaluate how the power output changes with the changes of
yaw angles. It employs sigmoid functions as the activation functions
in hidden layers, and its learning result is illustrated in Fig. 10a. One
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Fig. 11. Power outputs of wind turbines. (a) Results of the proposed deep RL-based
method. (c) Results of the greedy strategy.

Fig. 12. Normalized power outputs of the wind farm. Different line colours are
employed to indicate different online learning procedures.

can see that SubNN.a can successfully approximate the mapping from
𝛾𝐹𝑖 to 𝐸𝐹𝑖∕𝐸

𝑔
𝐹𝑖

even the training data are collected under different
ind conditions. Based on the results of SubNN.a, we can calculate

he regularized reward 𝑅 for all training data and then carry out
upervised learning for SubNN.b. We employ the relu functions as the
ctivation functions in hidden layers, and the training error is given
n Fig. 10b under the learning rate 0.01. One can see that the training
rror becomes negligible after 2000 iterations.

Then we embed the RR module in DDPG to optimize the yaw
ettings of the whole wind farm. The critic and actor networks are
hree-layer fully connected NNs with 32 neurons in hidden layers and
mploy the relu functions as the activation functions. The main critic
nd actor’s learning rates are 0.001 and 0.005, respectively, and the
oft replacement rate of target critic and actor is set to be 𝜏 = 0.01. The

size of the memory buffer  is set to be 𝑚 = 2000, and the size of the
ampling batch is 𝑏 = 32. This indicates, following the experience replay
trategy [16,17], 32 transitions are sampled randomly from  for
N training at each learning step. Other parameters in our algorithm

nclude 𝛽 = 0.9 and 𝑏 = 1 deg.
9

𝑎

Our RR-DDPG is pre-trained offline and fine-tuned online. Specif-
ically, 10000-step training is carried out offline, and then the perfor-
mance of RR-DDPG is tested and improved online with SOWFA. The
online learning is triggered every 700 s (i.e. 𝑡𝑎 = 700 s) to mitigate
the stochastic features of wind conditions. Once the online learning is
triggered, the mean power outputs over the last 700 s and the yaw
settings of all the turbines are employed to update the whole algorithm.
Then the new yaw settings obtained by the RR-DDPG are applied to the
wind farm until the next learning process is triggered. Moreover, to
achieve yaw tracking in online testing, we consider the yaw actuator
model from the NREL FAST [25]: 𝑌𝐼 𝜔̇𝑖 + 𝑌𝐷𝜔𝑖 + 𝑌𝑆𝛾𝑖 = 𝑢𝑖, where 𝑌𝐼 ,
𝑌𝐷, and 𝑌𝑆 are respectively the inertia, torsional damping constant, and
torsional spring stiffness. Their true values are chosen to be 𝑌𝐼 = 38.9
kg m2, 𝑌𝐷 = 102.2 N m s and 𝑌𝑆 = 85.9 N m, which are unknown to the
CL-based adaptive controller. Besides, their estimation bounds are set
to be 𝑌𝐼,min = 20, 𝑌𝐼,max = 50, 𝑌𝐷,min = 60, 𝑌𝐷,max = 150, 𝑌𝑆,min = 50, and
𝑌𝑆,max = 100. The parameters of the yaw tracking controller are 𝑘𝑝 = 4,
𝑘𝑑 = 4, 𝑘𝑦 = 10, and 𝑘𝑤 = 20.

Under all these settings, a 2000-second simulation is conducted
with SOWFA, in which the online learning process is triggered 2 times.
Besides, the greedy-mode simulation under identical wind conditions
is also conducted for comparison purposes. The power production of
every turbine in the farm and the relative total power production
(with respect to the greedy mode) are illustrated in Figs. 11 and 12,
respectively. Before the changes of wake effects under new yaw settings
are fully propagated (around the first 400 s in the simulation), the
power output is decreased due to yaw offsets. After that, we can see that
the proposed RL-based control method leads to clear power increases
when compared with the greedy strategy. Its performance is furthered
improved as the online learning is conducted. Specifically, after the
second online learning process is finished, the proposed method can
lead to a significant increase (around 15% on average) on the farm’s
total power generation. The final yaw settings at 2000 s are 22 deg for
turbines 1 and 4, 24 deg for turbines 2 and 5, and −1 deg for turbines
3 and 6. Finally, the flow fields at the 700 s, 1400 s, and 2000 s are
provided in Figs. 13–15, respectively, in comparison with the greedy-
strategy cases. All these results show that our method successfully
achieves power generation optimization and wake steering for wind
farms.

6. Conclusions

A novel deep reinforcement learning (RL)-based control method
has been developed to optimize the total power production of wind
farms through wake steering. A special reward regularization module
was designed to estimate wind turbines’ normalized power outputs
under different yaw settings and stochastic wind conditions. It was
then embedded in the deep deterministic policy gradient algorithm
to optimize the yaw settings of all turbines in the farm. Our deep
RL-based wind farm control method is data-driven and model-free,
which addresses the limitations of current wind farm control methods,
including reliance on accurate analytical/parametric models and lack
of adaptability to uncertain wind conditions. Also, a novel composite
learning-based controller was designed to achieve accurate closed-
loop yaw tracking under uncertainties of yaw actuators. High-fidelity
simulations were carried out for performance validation. We conducted
90 sets of 1000-second large-eddy simulations with SOWFA to collect
offline training data for our RL algorithm built on Tensorflow. Each
set of simulation required around 44 hours’ computation using 256
CPU cores. The control scheme was then fine-tuned online with the
Tensorflow-SOWFA pipeline. Results showed that our method could
significantly improve the wind farm’s total power production by 15%
on average compared with the benchmark. The method proposed in this
paper is application-oriented. It only needs sparse training datasets that
are easy-to-collect in actual wind farm applications. Moreover, it can be
pre-trained offline and fine-tuned online, rendering strong adaptability
to uncertain environments and providing an easy-to-implement wind

farm control solution with enhanced generality and flexibility.
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Fig. 13. Simulation results of the flow fields at 700 s. (a) The greedy strategy. (b) The proposed deep RL-based control strategy.

Fig. 14. Simulation results of the flow fields at 1400 s. (a) The greedy strategy. (b) The proposed deep RL-based control strategy.

Fig. 15. Simulation results of the flow fields at 2000 s. (a) The greedy strategy. (b) The proposed deep RL-based control strategy.
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ppendix. Proof of Theorem 1

We start with the following storage function

𝑉𝑎 =
1
2
(𝑘𝑝𝛾2𝑒 +𝑀𝑖𝜔

2
𝑒 )

+ 1
𝑘𝑦

ℎ
∑

𝑞=1
(𝜃𝑞,max − 𝜃𝑞,min)[𝜓̃𝑞 + ln(1 + e−(𝜓̃𝑞+𝜓𝑞 ))

− 𝜓̃𝑞sig(𝜓𝑞) − ln(1 + e−𝜓𝑞 )]

(A.1)

where 𝜓̃𝑞 is the 𝑞th entry of 𝜓̃ with 𝜓̃ = 𝜓̂ −𝜓 . Here 𝜓 denotes the true
projected value of 𝜃. We mention that 𝑉𝑎 is a valid Lyapunov function
candidate. To show this fact, we define 𝐻(𝜓̃𝑞) = (𝜃𝑞,max − 𝜃𝑞,min)[𝜓̃𝑞 +
ln(1 + e−(𝜓̃𝑞+𝜓𝑞 )) − 𝜓̃𝑞sig(𝜓𝑞) − ln(1 + e−𝜓𝑞 )]. Then the gradient of 𝐻 with
espect to 𝜓̃𝑞 follows

𝜓̃𝑞𝐻 = (𝜃𝑞,max − 𝜃𝑞,min)[sig(𝜓̃𝑞 + 𝜓𝑞) − sig(𝜓𝑞)] = 𝜃𝑞 (A.2)

where 𝜃𝑞 is the 𝑞th entry of 𝜃 with 𝜃 = 𝜃̂ − 𝜃. Therefore, ∇𝜓̃𝑞𝐻 is
monotonously increasing, which indicates that 𝜓̃𝑞 = 0 is the global
minimizer of 𝐻 and that the corresponding minimal value is 𝐻(0) = 0.
Thus 𝑉𝑎 is a valid Lyapunov function candidate. Substituting (18) and
(19) into the time derivative of 𝑉𝑎 yields

𝑉̇𝑎 = −𝑘𝑣𝜔2
𝑒 + 𝜔𝑒𝑌𝑖𝜃 +

1
𝑘𝑦
𝜃T ̇̂𝜓

= −𝑘𝑣𝜔2
𝑒 − 𝑘𝑤𝜃

T
𝐿
∑

𝑙=1
[𝑊 T

𝑖 (𝑡𝑙)𝑊𝑖(𝑡𝑙)𝜃̂ −𝑊 T
𝑖 (𝑡𝑙)𝑢𝑖(𝑡𝑙)]

(A.3)

Recall (4), we have 𝑢𝑖 = 𝑊𝑖𝜃. Substituting this fact back into (A.3),
one has

𝑉̇𝑎 = −𝑘𝑣𝜔2
𝑒 − 𝑘𝑤𝜃

T
𝐿
∑

𝑙=1
[𝑊 T

𝑖 (𝑡𝑙)𝑊𝑖(𝑡𝑙)]𝜃 (A.4)

Since ∑𝐿
𝑙=1[𝑊

T
𝑖 (𝑡𝑙)𝑊𝑖(𝑡𝑙)] ≥ 0, one has 𝛾𝑒, 𝜔𝑒, 𝜓̃ ∈ ∞. Then one can

ensure that 𝛾𝑒, 𝜔𝑒 → 0 by Barbalat lemma. Moreover, the boundedness
of 𝜓̂ indicates that 𝜃̂ ∈ (𝜃 , 𝜃 ).
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𝑞 𝑞,min 𝑞,max
Next we will show that the exponential convergence can be ensured
when ∑𝐿

𝑙=1[𝑊
T
𝑖 (𝑡𝑙)𝑊𝑖(𝑡𝑙)] is full-rank. We denote its minimal eigenvalue

as 𝜆𝑤 and consider a storage function:

𝑉𝑏 = 𝛼𝑉𝑎 + 𝛾𝑒𝜔𝑒 (A.5)

where 𝛼 > 0 is employed for analysis purposes. One can readily verify
that 𝑉𝑏 is a valid Lyapunov function candidate under the condition
𝛼 > 1∕

√

𝑘𝑝𝑀𝑖. Then we have

𝑉̇𝑏 = − 𝑘𝑝𝛾2𝑒 − (𝛼𝑘𝑣 − 1)𝜔2
𝑒 − 𝑘𝑣𝛾𝑒𝜔𝑒 + 𝛾𝑒𝑌𝑖𝜃

− 𝛼𝑘𝑤𝜃
T

𝐿
∑

𝑙=1
[𝑊 T

𝑖 (𝑡𝑙)𝑊𝑖(𝑡𝑙)]𝜃
(A.6)

y employing the inequality of arithmetic and geometric means, one
as

̇𝑏 ≤ −
𝑘𝑝
2
𝛾2𝑒 − (𝛼𝑘𝑣 − 1 −

𝑘2𝑣
𝑘𝑝

)𝜔2
𝑒 − (𝛼𝑘𝑤𝜆𝑤 −

‖𝑌𝑖‖2

𝑘𝑝
)‖𝜃‖2 (A.7)

ince the reference signals and tracking errors are bounded, we can
nsure that 𝑌𝑖 is also bounded and that there exists a positive constant
𝑐𝑦 such that ‖𝑌𝑖‖2 ≤ 𝑐𝑦. Therefore, by setting 𝛼 > 2 ⋅ max{1∕𝑘𝑣 +
𝑘𝑣∕𝑘𝑝, 𝑐𝑦∕(𝑘𝑝𝑘𝑤𝜆𝑤), 1∕

√

𝑘𝑝𝑀𝑖}, one has

𝑉̇𝑏 ≤ −
𝑘𝑝
2
𝛾2𝑒 −

𝛼𝑘𝑣
2
𝜔2
𝑒 −

𝛼𝑘𝑤𝜆𝑤
2

‖𝜃‖2 (A.8)

Besides, we state that ∑ℎ
𝑞=1𝐻(𝜓̃𝑞) ≤ 𝑐𝜓𝜃2 when 𝜓̃ ∈ ∞, where 𝑐𝜓 =

max𝑞=1,2...,ℎ;𝑡≥0{
(1+e−𝜓̃𝑞 (𝑡)−𝜓𝑞 )2

(𝜃𝑞,max−𝜃𝑞,min)e
−𝜓̃𝑞 (𝑡)−𝜓𝑞

}. This can be verified by analysing

the gradient of ∑ℎ
𝑞=1𝐻(𝜓̃𝑞)− 𝑐𝜓𝜃2 with respect to 𝜓̃ . Based on this fact,

one has

𝑉𝑏 ≥
𝛼𝑘𝑣
4
𝛾2𝑒 +

𝛼𝑀𝑖
4

𝜔2
𝑒 + 𝛼𝑐𝜓‖𝜃‖

2 (A.9)

Eqs. (A.8) and (A.9) lead to 𝑉̇𝑏 ≤ −𝛽𝑉𝑏, where 𝛽 = min
{2𝑘𝑝∕(𝛼𝑘𝑣), 2𝑘𝑣∕𝑀𝑖, 𝑘𝑤𝜆𝑤∕(2𝑐𝜓 )}. This directly guarantees the expo-
nential convergence of 𝛾𝑒, 𝜔𝑒 and 𝜓̃ , and it completes the whole
proof.
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