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A B S T R A C T

Spatiotemporal wind field information is of great interest in wind industry e.g. for wind resource assessment
and wind turbine/farm monitoring & control. However, its measurement is not feasible because only sparse
point measurements are available with the current sensor technology such as LIDAR. This work fills the
gap by developing a method that can achieve spatiotemporal wind field predictions by combining LIDAR
measurements and flow physics. Specifically, a deep neural network is constructed and the Navier–Stokes
equations, which provide a good description of atmospheric flows, are incorporated in the deep neural network
by employing the physics-informed deep learning technique. The training of this physics-incorporated deep
learning model only requires the sparse LIDAR measurement data while the spatiotemporal wind field in the
whole domain (which cannot be measured) can be predicted after training. This study, which can discover
complex wind patterns that do not present in the training dataset, is totally distinct from previous machine
learning based wind prediction studies which treat machine learning models as ‘‘black-box" and require the
corresponding input and target values to learn complex relations. The numerical results on the prediction of
the wind field in front of a wind turbine show that the proposed method predicts the spatiotemporal flow
velocity (including both downwind and crosswind components) in the whole domain very well for a wide
range of scenarios (including various measurement noises, resolutions, LIDAR look directions, and turbulence
levels), which is promising given that only line-of-sight wind speed measurements at sparse locations are used.
1. Introduction

As one of the most important renewable energy resources, wind
energy is under fast development all over the world. While driving large
mechanical devices (such as horizontal-axis wind turbines) to generate
power, wind is also the main source of disturbance that causes damages
to these devices and undermines the quality of the generated electricity.
In order to make good use of the incoming wind and to mitigate the
impact of the disturbance, wind speed measurement technologies, such
as light detection and ranging (LIDAR) [1], have been developed in
recent years. Extensive research efforts have since then been spent in
the measurement analysis of LIDAR [2,3] and their applications in wind
turbine control [4,5] and wind resource assessment [6,7]. However,
LIDAR can only provide wind speed measurements at sparse spatial
locations along the laser beam. As pointed out in [8], it can only
measure the line-of-sight (LoS) wind speed in the laser beam direction,
so the wind speed magnitude and direction have to be estimated
(Cyclops’ dilemma). Thus the spatiotemporal wind field measurement
is out of reach with the current sensor technologies. On the other
hand, the detailed wind information is of great interest because it
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can offer brand new opportunities in wind industry e.g. developing
strategies on the wind resource assessment and the monitoring and
control of wind turbine/farm. For example, detailed wind information
was investigated based on CFD simulations for the wind resource assess-
ment of complex terrains in [9,10] while the control of wind turbines
based on detailed flow structures was studied in [11] which showed
the detailed wind information could improve the control performance
significantly. Therefore, this work aims to bridge the gap between the
limitation of the current wind measurement technology and the need of
spatiotemporal wind information in various applications, by developing
a deep learning based method that can predict the spatiotemporal wind
field in the whole flow domain through combining LIDAR measurement
and flow physics.

Currently there are very limited studies on unsteady wind field
predictions from LIDAR measurements. In [12], a wind field reconstruc-
tion method was proposed, where a simplified dynamic model of the
atmospheric boundary layer was derived and then an unscented Kalman
filter (UKF) was used to estimate the model state from LIDAR measure-
ments. The sensitivity study of the developed method was also carried
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out, where different beam half-angles, look directions, atmosphere
conditions, and measurement noise levels were considered. In [13], a
velocity and pressure field estimation framework was proposed, where
a reduced order dynamic model was built based on Navier–Stokes (NS)
equations, by uniquely employing a pressure Poisson equation for-
mulation in conjunction with a basis function decomposition method.
Then a modified UKF algorithm was used for the state estimation. The
proposed method was validated by both numerical experiments and
real-world LIDAR measurements.

The aforementioned studies employed traditional approaches and
relied on either low-fidelity flow models or reduced order modeling of
NS equations. Thus the prediction accuracy was undermined. In this
work, machine learning approach will be employed with NS equations
being directly encoded into the wind field prediction process, which
can approximate the complex nonlinear dynamics of the incoming wind
without model reduction.

Machine learning, in particular deep learning [14], is developing
very fast in the past few years, and its applications in wind industry
have also seen great successes e.g. in wind power forecasting [15],
wind speed forecasting [16,17], and wind farm wake modeling [18,
19]. However, the incorporation of physical laws in the training of
deep learning models has not been explored in wind energy studies
while such ideas are emerging in other physical systems such as the
data-based turbulence modeling [20,21], the discovery of governing
equations [22,23], solving high-dimension partial differential equations
(PDEs) [24] and the surrogate modeling of physical systems [25,26].
Recently a versatile machine learning framework for solving forward
and inverse problems involving PDEs, called physics-informed neural
networks (PINNs), was proposed in [27]. The main idea of PINNs is to
encode PDEs in terms of loss functions, which are then used for neural
network (NN) training together with the available labeled data. Specifi-
cally, automatic differentiation [28] is employed to take the derivatives
of the NN output with respect to the NN input (i.e. space and time
coordinates). These derivatives are then used to form the loss functions
that represent the residues of the PDEs. The development of PINNs
is becoming very active. Recent studies include both method develop-
ment (such as its uncertainty quantification [29], the use of adaptive
activation functions [30] and the learning from multi-fidelity [31]
and noisy data [32]) and various applications (such as vortex-induced
vibrations [33], high-speed flow [34], and hidden-physics inference
from flow visualizations [35]).

In this work, following the PINNs framework [27], a deep learning
based method is proposed for the predictions of spatiotemporal wind
field using only LIDAR measurements at sparse locations. Here the
NS equations are encoded in the deep NN and an observation process
is embedded into the NN which maps the full flow state to LIDAR
observations. The NN training is carried out to minimize both the
functional loss (which encodes the NS equations) and the measure-
ment loss (which is based on LIDAR observations). We distinguish
our method with traditional numerical methods and existing machine
learning based wind prediction methods as follows: (1) Various nu-
merical models e.g. [36–38] are widely used for wind simulations and
the detailed wind field can be obtained by solving the NS equations
numerically with properly-defined boundary conditions or the input
conditions estimated from measurement data [39]. However, these
models are mainly designed for forward simulations of wind flows. It is
extremely challenging to incorporate real-time scattered measurement
data in these models because it involves solving the inverse problem,
which would require a formidable number of time-consuming simu-
lations to calibrate the model parameters and the input conditions
against the measurement data. In contrast, the PINNs framework is
specifically designed to incorporate data and PDEs in a unified manner
which makes it very powerful in solving inverse problems governed
by PDEs. (2) Previous machine learning based wind prediction studies
e.g. [16,18,40] treat machine learning models as ‘‘black-box’’ and
2

require the corresponding input and target values for training. Then
they can predict the wind patterns which are present in the training
dataset. We mention that the paper [40] did explore to involve physics
in the form of simple analytical relations in the design of the machine
learning on the wind farm modeling, which showed very promising
results. However, all these studies followed the traditional supervised
machine learning, thus cannot discover the wind patterns that are not
present in the measurement data. In summary, our work, which fuses
physics in terms of PDEs and data in the deep learning training process
for wind applications for the first time, can achieve the predictions
of spatiotemporal wind field in the whole domain based on only line-
of-sight LIDAR measurements at sparse spatial locations, which is not
achievable by either traditional numerical models or existing machine
learning based models in the literature.

The method proposed in this work is tested and validated using
large-scale numerical simulations based on SOWFA (Simulator for On-
shore/Offshore Wind Farm Applications) [41]. SOWFA is a numerical
solver based on OpenFOAM for the 3D large eddy simulation (LES)
of wind flow around wind turbine array in the atmospheric boundary
layer, which is developed by National Renewable Energy Laboratory.
It is widely used [41] and has been validated in various studies such
as the study of the turbine dynamics [42] and the control of wind
farms [43]. It is used in this work as the high-fidelity numerical
experiment platform to simulate the real-world wind flows in the at-
mospheric boundary layer. The LIDAR measurement and the turbulent
wind field are extracted from SOWFA simulations as the model training
data and the ground truth (for model validation) respectively. The
results show that the proposed method can predict the spatiotemporal
wind field very well, including both the wind magnitude and direction
predictions. In particular, the propagation of the high-speed/low-speed
flow structures in the incoming wind is accurately predicted, which is
of great importance for wind turbine control. To further demonstrate
the method’s robustness, a sensitivity analysis is also carried out, where
LIDAR measurements with various levels of noise and under different
LIDAR spatial/temporal resolutions, different LIDAR look directions
and different freestream turbulence intensity (FSTI) levels are consid-
ered. The results show that the proposed method performs very well
under all the scenarios considered.

The main contributions and novelties of this paper are summarized
as follows:

(1) The prediction of spatiotemporal wind velocity field in the
whole flow domain based on line-of-sight wind speed at
only a few sparse locations measured by LIDAR is achieved,
which is of great importance for developing advanced ap-
proaches for the wind resource assessment and for the mon-
itoring and control of wind turbine/farm. The developed
method can achieve: (i) the prediction of flow dynamics over
the whole domain of interest, including the spatial locations
where no measurements are available; (ii) great accuracy in
wind field estimation, because the spatiotemporal correlations
between measurements are taken into account implicitly through
NS equations without model reduction; (iii) robust wind estima-
tion in the scenarios of both ‘‘small’’ and ‘‘big’’ data, as the issue
of overfitting commonly encountered in deep learning is tackled
by enforcing the physical constraints.

(2) To our knowledge, this is for the first time that physical
laws (in terms of PDEs) and data are fused in the training
of deep learning models for wind applications. Specifically
a deep NN with a large degree of freedom is constructed and
then the NS equations (which provide a good description of
atmospheric flows) are incorporated directly in the deep NN.
After that, the deep NN is trained to minimize the errors from
both fitting the LIDAR measurements and enforcing the NS
equations. Because the existing wind prediction studies are ei-
ther purely data-driven [16,17] or based on low-fidelity/reduced
order models [12,13], they cannot take full advantage of both

physical laws in terms of PDEs and data.
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Table 1
The main terminologies (including abbreviations, parameters and variables) mentioned in this paper.

List of terminologies (abbreviations)
DoF Degree of freedom NN Neural network
FSTI Freestream turbulence intensity NS Navier–Stokes
HPC High-performance computing PDE Partial differential equation
LES Large eddy simulation PINN Physics-informed neural network
LIDAR Light detection and ranging SOWFA Simulator for Offshore Wind Farm Applications
LoS Line-of-sight UKF Unscented Kalman filter
MRMSE Mean value of the root-mean-squared errors

List of terminologies (parameters and variables)
𝐵𝑖 The bias term in the NN �̂� The prediction value of the wind magnitude
𝐷 The turbine rotor diameter 𝑢∗ The true value of the wind magnitude
𝒟 The dataset of all the NS test points 𝑈∞ The average freestream wind speed
𝒟 The nondimensionalized 𝒟 �̄� The effective wind speed
𝐿 + 1 The total number of layers in the NN �̃� 𝑙 All the LIDAR measurements by the left beam
ℒ1 The loss arising from NS residue terms 𝒰 𝑙 Nondimensionalized left beam data
ℒ2 The loss arising from LIDAR observations �̃� 𝑟 All the LIDAR measurements by the right beam
ℒ The total NN loss 𝒰 𝑟 Nondimensionalized right beam data
𝑁𝑑𝑜𝑓 The total DoF of the NN 𝑊𝑖 The weight matrix in the NN
𝑁𝑑1 The batch size for right-beam test points [�̃�𝑙 , �̃�𝑙] The spatial coordinate of points in the left beam
𝑁𝑑2 The batch size for left-beam test points [�̃�𝑟 , �̃�𝑟] The spatial coordinate of points in the right beam
𝑁𝑛𝑠 The batch size for NS residue terms [𝑥𝑛𝑠 , 𝑦𝑛𝑠 , 𝑡𝑛𝑠] The test points to evaluate NS residue terms
𝑁ℎ The neuron number of the hidden layers 𝜖𝑢 The MRMSE of the predicted wind magnitude
𝑁 𝑙 The total number of points in the left beam 𝜖𝛾 The MRMSE of the predicted wind direction
𝑁 𝑟 The total number of points in the right beam �̂� The prediction value of the wind direction
𝑁𝑡𝑒𝑠𝑡 The total number of NS test points 𝛾∗ The true value of the wind direction
𝑇 The total time period 𝜈 The kinematic viscosity of air
�̃� The LIDAR measurement values 𝜓 The stream function
𝑢𝑟𝑙𝑜𝑠 NN output of the LoS speed in the right beam 𝜎 The activation function in the NN
𝑢𝑙𝑙𝑜𝑠 NN output of the LoS speed in the left beam
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(3) The developed method is validated through high-fidelity
LES wind farm simulations and its robustness is verified
under a wide range of scenarios. The results show that the
proposed method predicts the spatiotemporal flow velocity in
the whole flow domain very well for all the considered scenar-
ios including LIDAR measurements with various levels of noise
and under different LIDAR spatial/temporal resolutions, differ-
ent LIDAR look directions and different FSTI levels. Both the
wind magnitude and direction are accurately predicted by using
only the LoS LIDAR measurements, overcoming the Cyclops’
dilemma. A short-term wind forecasting is also achieved which
does not rely on the Taylor’s frozen turbulence hypothesis [44],
as the NN learns the dynamics of the evolving wind field from
NS equations.

The remaining part of this paper is organized as follows: the deep
earning based method for the spatiotemporal wind field predictions is
escribed in Section 2. Then the performance of the proposed method
s tested by using an LES wind farm simulator as the experimental
latform in Section 3, where a wide range of scenarios are considered
o verify the robustness of the proposed method. Finally the conclusions
re drawn in Section 4. The main terminologies mentioned in this paper
re presented in Table 1.

. Methodology

This work addresses the problem of predicting the spatiotemporal
ind velocity field in the whole flow domain by physics-informed
eep learning and LIDAR measurements at sparse spatial locations. The
onsidered LIDAR configuration is illustrated in Fig. 1(A), where two
aser beams in the horizontal hub-height 2D plane (shown as the shaded
lue area) are used to measure the LoS wind speed in the laser beam
irections at a frequency of 1 s at discrete spatial locations along the

beams (marked as cross signs in Fig. 1(A)). The half-angle of the beams
is 15◦. An example of the wind speed measurements by the left and
right beams at these discrete locations during a time period from 0
to 𝑇 is shown in Fig. 1(B). The wind field prediction problem thus
states as how to predict the spatiotemporal velocity (including both the
downwind and crosswind components) field in the domain of interest
3

(i.e. the whole hub-height 2D flow domain colored in blue in Fig. 1(A))
from time 0 to 𝑇 based on only the LoS wind speed measurements at a
ew sparse locations marked as cross signs in Fig. 1(A).

This task is not achievable by using the traditional supervised
achine learning framework with whether simple NN such as multi-

ayer perceptions or complex NN such as convolution NN and recurrent
N, because the traditional framework requires the information on

he whole spatiotemporal wind field as training data, but in reality
nly the LoS wind speed data at sparse locations is available. In order
o reconstruct the spatiotemporal wind field based on only sparse
easurement data, our work employs the novel PINNs framework,
here the incompressible NS equations, which provides a very good
escription for many fluid flows such as atmospheric boundary layer
lows, are fused with LIDAR data in the training of the deep learning
odel.

The overall flowchart illustrating the proposed method is shown in
ig. 1, where the training dataset collection, the deep NN structure
nd training, and the model prediction are illustrated in Fig. 1(A–
), Fig. 1(C), and Fig. 1(D–E) respectively. The detailed training and
rediction process is described in the rest part of this section.

.1. Training dataset

The training dataset in this work is the LoS wind speed values at
parse spatial locations measured by LIDAR beams. The data measured
y the left and right beams are collected separately as the observation
rocess (i.e. the function that maps the flow states to the measurement
alues) depends on the beam direction. Denote the spatial coordinate
f the 𝑖th measurement point in the right beam as [�̃�𝑟𝑖 , �̃�

𝑟
𝑖 ], the spatial

oordinate of the 𝑖th measurement point in the left beam as [�̃�𝑙𝑖 , �̃�
𝑙
𝑖], and

he LIDAR measurement values at these coordinates at 𝑡𝑡ℎ second as
�̃��̃�𝑟𝑖 ,�̃�𝑟𝑖 ,𝑡 and �̃��̃�𝑙𝑖 ,�̃�𝑙𝑖 ,𝑡 respectively. We then collect all the LIDAR measure-
ments by the right beam during a time period of 𝑇 seconds as the data
matrix �̃� 𝑟 of shape [𝑁𝑟 × 𝑇 , 4], where 𝑁𝑟 represents the total number
of discrete points in the right beam and each row of �̃� 𝑟 consists of
the spatiotemporal coordinate [�̃�𝑟𝑖 , �̃�

𝑟
𝑖 , 𝑡] and the corresponding measure-

ment value �̃��̃�𝑟𝑖 ,�̃�𝑟𝑖 ,𝑡. The measurements by the left beam are collected in
the same way as �̃� 𝑙 of shape [𝑁 𝑙 × 𝑇 , 4] with 𝑁 𝑙 representing the total
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Fig. 1. The flowchart illustrating the proposed spatiotemporal wind field prediction method. (A) LIDAR configuration. (B) The LoS wind speed measured by the left and right
laser beams during a certain period. (C) The deep learning model which incorporates the NS equations and LIDAR measurements. (D) The prediction of wind velocity at a given
time instant and a given location after NN training. (E) The wind field prediction in the whole domain at a given time instant.
number of discrete points in the left beam. These data matrices are then
nondimensionalized by the characteristic length 𝐷, the characteristic
time 𝐷∕𝑈∞, and the characteristic velocity 𝑈∞, where 𝐷 represents
the turbine rotor diameter and 𝑈∞ represents the average freestream
wind speed. The nondimensionalized data matrices, which are the only
wind data required for the NN training, are hereby denoted as 𝒰 𝑟 and
4

𝒰 𝑙. In order to evaluate the trained machine learning model, the test
dataset is specified as the spatiotemporal flow field in the whole domain
in front of the wind turbine during the same time period 𝑇 . To avoid
confusion, we mention that the training and test dataset in this work
are totally different, with the former consisting of the LoS wind speed
data at sparse locations and the latter consisting of the wind velocity
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vectors at every locations in the 2D plane in front of the wind turbine,
while in the supervised machine learning they are generally of the same
data structure and are usually obtained by dividing the same dataset.

2.2. Neural network structure

After collecting the training dataset, a fully-connected deep NN is
constructed, which is illustrated in shaded gray and denoted as DNN1
in Fig. 1(C). This deep NN takes the nondimensional spatiotemporal
coordinate (i.e. [𝑡, 𝑥, 𝑦]) as the input and returns the nondimensional
tream function [45] and the pressure as the output (i.e. [𝜓, 𝑝]). It is
sed to approximate the mapping between the continuous spatiotem-
oral coordinate and the corresponding quantities, such that given any
ime instant 𝑡𝑖 and any location [𝑥𝑖, 𝑦𝑖] the deep NN is trained to return
(𝑡𝑖, 𝑥𝑖, 𝑦𝑖) and 𝑝(𝑡𝑖, 𝑥𝑖, 𝑦𝑖) as the output. However, no data about 𝑝 and 𝜓

is needed for training this NN because these quantities are just auxiliary
quantities used for deriving the velocity and encoding NS equations.
This fully-connected NN can be expressed in recursive form as

𝐻0 = [𝑡, 𝑥, 𝑦],

𝐻𝑖 = 𝜎(𝐻𝑖−1 ⋅𝑊𝑖 + 𝐵𝑖), 1 ≤ 𝑖 ≤ 𝐿, (1)
𝐻𝐿 = [𝜓, 𝑝],

where 𝐿 + 1 represents the total number of layers in this deep NN,
{𝑊𝑖, 1 ≤ 𝑖 ≤ 𝐿} and {𝐵𝑖, 1 ≤ 𝑖 ≤ 𝐿} represent all the training variables
n this NN, and 𝜎 represents the activation function. The shapes of the
eight matrix 𝑊1, {𝑊𝑖, 1 < 𝑖 < 𝐿} and 𝑊𝐿 are [3, 𝑁ℎ], [𝑁ℎ, 𝑁ℎ] and

[𝑁ℎ, 2] respectively, where 𝑁ℎ represents the neuron number of the
hidden layers. The shapes of the bias term {𝐵𝑖, 1 ≤ 𝑖 < 𝐿} and 𝐵𝐿
are [1, 𝑁ℎ] and [1, 2] respectively. The total degree of freedom (DoF) of
this deep NN (i.e. the total number of training variables) can then be
calculated as

𝑁𝑑𝑜𝑓 = 3𝑁ℎ + (𝐿 − 2)𝑁ℎ𝑁ℎ + 2𝑁ℎ + (𝐿 − 1)𝑁ℎ + 2. (2)

he hyperbolic tangent function is used for all the hidden layers in this
ork and the activation is not applied for the output layer. We mention

hat 𝐿 is typically very large. Thus the NN is termed ‘‘deep’’ and it is
his deep structure that enhances the ability of the NN in capturing very
omplex nonlinear dynamics. We mention that fully-connected NN with
uch large DoF is generally not used in traditional supervised machine
earning as the issue of overfitting is hard to tackle, while it can be used
n this work as overfitting is constrained by the encoded PDEs in the
hysics-informed deep learning framework.

After constructing this deep NN, a second NN, as shown in shaded
reen and denoted as DNN2 in Fig. 1(C), is constructed which takes
he nondimensional spatiotemporal coordinate (i.e. [𝑡, 𝑥, 𝑦]) as the input
nd returns the nondimensional downwind velocity 𝑢, crosswind veloc-
ty 𝑣 and pressure 𝑝 as the output. This second NN is derived based on
he first NN, by taking the derivative of the NN output of the first NN
ith respect to the NN input using automatic differentiation. Thus it

hares the same training variables with the first NN and no new training
ariables are created. The output of this second NN is derived by

𝜓∕𝜕𝑦 = 𝑢,−𝜕𝜓∕𝜕𝑥 = 𝑣. (3)

herefore, the continuity equation
𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

= 0, (4)

is satisfied automatically. As LIDAR can only measure the LoS wind
speed, no data about 𝑢 or 𝑣 is available for the NN training. To train
the NN with the LIDAR data, an observation process that maps the flow
state (i.e. [𝑢, 𝑣, 𝑝]) to LIDAR observations (i.e. [𝑢𝑟𝑙𝑜𝑠, 𝑢

𝑙
𝑙𝑜𝑠]) is embedded to

the second NN, which is shaded in light red in Fig. 1(C). The functions
𝑓1 and 𝑓2 in Fig. 1(C) represent the right and left beam observation
processes respectively, which are expressed as

𝑓 (𝑢, 𝑣) = 𝑢𝑐𝑜𝑠(15◦) − 𝑣𝑠𝑖𝑛(15◦) (5)
5
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𝑓2(𝑢, 𝑣) = 𝑢𝑐𝑜𝑠(−15◦) − 𝑣𝑠𝑖𝑛(−15◦) (6)

The inclusion of more LIDAR beams and/or other types of flow sensors
such as pressure sensors, is straightforward by embedding the corre-
sponding observation processes in this second NN. In this work, only
𝑓1 and 𝑓2 are embeded as only the measurements from the left and
right LIDAR beams are used for the NN training.

Next, a third NN, as shown in shaded pink and denoted as DNN3
in Fig. 1(C), is constructed based on the second NN by taking the
derivative of the NN output with respect to the NN input using au-
tomatic differentiation. This NN, which is the physics-informed part,
takes the nondimensional spatiotemporal coordinate (i.e. [𝑡, 𝑥, 𝑦]) as
the input and returns the NS residue terms (i.e. [𝑒𝑢, 𝑒𝑣]) as the out-
put. The NS residue terms are defined by reformulating the following
nondimensional 2D NS equations

𝜕𝑢
𝜕𝑡

+ 𝑢 𝜕𝑢
𝜕𝑥

+ 𝑣 𝜕𝑢
𝜕𝑦

= −
𝜕𝑝
𝜕𝑥

+ 1
𝑅𝑒

( 𝜕
2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

) (7)

𝜕𝑣
𝜕𝑡

+ 𝑢 𝜕𝑣
𝜕𝑥

+ 𝑣 𝜕𝑣
𝜕𝑦

= −
𝜕𝑝
𝜕𝑦

+ 1
𝑅𝑒

( 𝜕
2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

), (8)

as

𝑒𝑢 =
𝜕𝑢
𝜕𝑡

+ 𝑢 𝜕𝑢
𝜕𝑥

+ 𝑣 𝜕𝑢
𝜕𝑦

+
𝜕𝑝
𝜕𝑥

− 1
𝑅𝑒

( 𝜕
2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

) (9)

𝑒𝑣 =
𝜕𝑣
𝜕𝑡

+ 𝑢 𝜕𝑣
𝜕𝑥

+ 𝑣 𝜕𝑣
𝜕𝑦

+
𝜕𝑝
𝜕𝑦

− 1
𝑅𝑒

( 𝜕
2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

). (10)

Here 𝑅𝑒 = (𝑈∞𝐷)∕𝜈 with 𝜈 representing the kinematic viscosity of air.
In summary, there are three deep NNs constructed in the whole

NN structure. However, they are essentially just one NN in terms
of training, as all of them share exactly the same training variables
and only one loss function will be defined to train these training
variables. The NN training and prediction details are described in the
next subsection.

2.3. NN training and prediction

The deep NN is trained to minimize the loss arising from both the NS
residue terms and LIDAR observations. The loss arising from NS residue
terms is defined as

ℒ1 =
1
𝑁𝑛𝑠

𝑁𝑛𝑠
∑

𝑖=1
|𝑒𝑢(𝑥𝑛𝑠𝑖 , 𝑦

𝑛𝑠
𝑖 , 𝑡

𝑛𝑠
𝑖 )|2 + 1

𝑁𝑛𝑠

𝑁𝑛𝑠
∑

𝑖=1
|𝑒𝑣(𝑥𝑛𝑠𝑖 , 𝑦

𝑛𝑠
𝑖 , 𝑡

𝑛𝑠
𝑖 )|2 (11)

here {[𝑥𝑛𝑠𝑖 , 𝑦
𝑛𝑠
𝑖 , 𝑡

𝑛𝑠
𝑖 ], 1 ≤ 𝑖 ≤ 𝑁𝑛𝑠} is a batch of test points which is fed

o the deep NN to evaluate 𝑒𝑢 and 𝑒𝑣. In practice, a set of test points
n the spatiotemporal domain of interest are first collected in a data
atrix 𝒟 of shape [𝑁𝑡𝑒𝑠𝑡, 3], where 𝑁𝑡𝑒𝑠𝑡 is the total number of test

points and each row of 𝒟 contains one spatiotemporal coordinate. Then
[𝑥𝑛𝑠𝑖 , 𝑦

𝑛𝑠
𝑖 , 𝑡

𝑛𝑠
𝑖 ], 1 ≤ 𝑖 ≤ 𝑁𝑛𝑠} is generated by randomly sampling from the

data matrix 𝒟 , which is the data matrix 𝒟 nondimensionalized by the
haracteristic scale 𝐷 and 𝐷∕𝑈∞. In this work, a 81 × 41 × 101 uniform
rid points in the domain [−240, 0] m × [−60, 60] m × [0, 100] s are used
o generate 𝒟 .

The loss arising from LIDAR observations is defined as

2 =
1
𝑁𝑑1

𝑁𝑑1
∑

𝑖=1
|𝑢𝑟𝑙𝑜𝑠(𝑥

𝑟
𝑖 , 𝑦

𝑟
𝑖 , 𝑡

𝑟
𝑖 ) − 𝑢

𝑟
𝑖 |
2

+ 1
𝑁𝑑2

𝑁𝑑2
∑

𝑖=1
|𝑢𝑙𝑙𝑜𝑠(𝑥

𝑙
𝑖 , 𝑦

𝑙
𝑖 , 𝑡

𝑙
𝑖) − 𝑢

𝑙
𝑖|
2 (12)

where {[𝑥𝑟𝑖 , 𝑦
𝑟
𝑖 , 𝑡

𝑟
𝑖 , 𝑢

𝑟
𝑖 ], 1 ≤ 𝑖 ≤ 𝑁𝑑1} is a batch of right beam mea-

surement data which are randomly-sampled from the matrix 𝒰 𝑟, and
{[𝑥𝑙𝑖 , 𝑦

𝑙
𝑖 , 𝑡

𝑙
𝑖 , 𝑢

𝑙
𝑖], 1 ≤ 𝑖 ≤ 𝑁𝑑2} is a batch of left beam measurement data

which are randomly-sampled from the matrix 𝒰 𝑙.
Finally, the deep NN is trained to minimize the total loss defined

as
ℒ = ℒ1 +ℒ2, (13)
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Algorithm 1 The NN training and prediction procedure
1: % The NN training
2: Load LIDAR measurement data, i.e. 𝒰 𝑟 and 𝒰 𝑙.
3: Load the time and space coordinates of NS test points 𝒟 .
4: Set training iteration number 𝑁𝑖𝑡𝑒𝑟.
5: Set the batch size 𝑁𝑛𝑠, 𝑁𝑑1 , 𝑁𝑑2 .
6: for i in [1, 2, ..., 𝑁𝑖𝑡𝑒𝑟] do
7: Generate data batches of size 𝑁𝑑1 , 𝑁𝑑2 and 𝑁𝑛𝑠 from 𝒰 𝑟, 𝒰 𝑙 and

𝒟 respectively.
8: Train the deep NN by feeding these data batches to minimize

the total loss ℒ .
9: end for

10: % The NN prediction
11: Set any time coordinate of interest 𝑡.
12: Set a mesh of dimension 𝑁𝑚𝑒𝑠ℎ for the whole 2D domain.
13: for i in [1,2,...,𝑁𝑚𝑒𝑠ℎ] do
14: Set [𝑥𝑖, 𝑦𝑖] by the location of the 𝑖th mesh point.
15: Propagate [𝑥𝑖, 𝑦𝑖, 𝑡] through DNN2 to predict 𝑢 and 𝑣 at the 𝑖th

mesh point.
16: end for
17: The wind field in the whole domain at time 𝑡 is obtained by

combining the 𝑢 and 𝑣 predictions at all the mesh points.

by feeding the data batches {[𝑥𝑛𝑠𝑖 , 𝑦
𝑛𝑠
𝑖 , 𝑡

𝑛𝑠
𝑖 ], 1 ≤ 𝑖 ≤ 𝑁𝑛𝑠}, {[𝑥𝑟𝑖 , 𝑦

𝑟
𝑖 , 𝑡

𝑟
𝑖 , 𝑢

𝑟
𝑖 ], 1

≤ 𝑖 ≤ 𝑁𝑑1} and {[𝑥𝑙𝑖 , 𝑦
𝑙
𝑖 , 𝑡

𝑙
𝑖 , 𝑢

𝑙
𝑖], 1 ≤ 𝑖 ≤ 𝑁𝑑2} to the NN simultaneously

during each training iteration. The Adam optimization algorithm [46]
is employed in this work for the NN training.

After training, the spatiotemporal flow field in the whole flow
domain, including both the downwind and crosswind velocity compo-
nents, can be predicted. Specifically, given any time coordinate 𝑡𝑖 and
space coordinate [𝑥𝑖, 𝑦𝑖], the corresponding wind speed 𝑢𝑖 and 𝑣𝑖 can be
predicted through the second NN, as shown in Fig. 1(D). The prediction
of the flow field in the whole domain at a given time instant, as shown
in Fig. 1(E), can be achieved by propagating the given time coordinate
and the space coordinates of all the mesh points in the domain of
interest through the second NN. The whole training and prediction
procedure is summarized as Algorithm 1. In addition, we mention that
after training, the short-term flow field forecasting can also be carried
out in a straightforward manner by simply specifying the time 𝑡 in Line
11 of Algorithm 1 as the time coordinate of interest in the future.

3. Numerical results

The wind field prediction method developed above is evaluated
in this section, by using the LES wind farm simulator SOWFA as the
experimental platform. The simulation setups are described first, then
the spatiotemporal flow field prediction is carried out and the results
are validated with the corresponding true values (i.e. the SOWFA
simulation results).

3.1. Simulation setups

The LES wind farm solver SOWFA is employed here to simulate
the turbulent atmospheric boundary layer. For the mesh generation, as
suggested by [43], a uniform mesh of size 12 m×12 m×12 m is used in
the whole simulation domain of size 3000 m × 3000 m × 1000 m, which
is illustrated in Fig. 2. The total number of cells is about 5.2×106. 400 s
simulations are carried out with a time step of 0.02 s. From the last 100s
simulations, the left and right LIDAR measurements are collected, and
the corresponding wind field data at turbine hub-height is recorded for
validation. In particular, the LIDAR measurement process is simulated
by extracting the velocity vectors at the corresponding spatial locations,
and then projecting them onto the LIDAR beam directions to obtain the
6

Fig. 2. A top view of the simulation domain at the turbine hub height. The contour
shows the instantaneous flow velocity magnitude.

Table 2
The hyper-parameters in the NN structure and the NN training procedure. Here 𝑙𝑟
represents the learning rate.
𝐿 𝑁ℎ 𝑁𝑛𝑠 𝑁𝑑1 𝑁𝑑2 𝑙𝑟

11 128 1000 1100 1100 10−4

LoS wind speed measurements. The turbine rotor dynamics is excluded
in this work, similarly as previous studies [12,13]. We mention that the
rotor’s blockage effects have impacts on the flow field in the vicinity
of the wind turbine [47,48], but the impacts become negligible in the
freestream flow further upstream which is the main interested region
for this work. The simulation in this work is carried out in local high-
performance computing (HPC) clusters, which takes around 2 hours’
computational time using 256 processors.

3.2. Performance evaluation

A baseline case is used here to test the performance of the proposed
method. For the turbulent atmospheric boundary layer simulations, an
average freestream wind speed of 8 m∕s with an FSTI level of 6%
is considered. For the LIDAR configurations, the range of the LIDAR
beams is 220 m and the distance between discrete measurement points
is 20 m. There are a total of 11 spatial measurement points per LIDAR
beams. The LIDAR measurement is carried out every second during the
whole period of 100 s and the measurement noise is excluded. Since
the wind turbine usually operates with a yaw angle equal to 0◦, the
LIDAR look direction is set as the mean wind direction in this baseline
case.

There are still some hyper-parameters in the NN structure and the
NN training procedure to be determined. The tuning of the hyper-
parameters is carried out by trying a set of configurations and compar-
ing their training losses. The hyper-parameters’ values used in this work
are given in Table 2. As can be seen, the final NN used in this work has
a total of 12 layers (𝐿+1) and the neuron numbers of the hidden layers
are 128. This results in a total DoF of 149 378. This deep structure with
such a large DoF enables the NN to accurately approximate complex
nonlinear PDE systems such as the NS systems in this work. The further
increase of the layer number and the neuron number is tested, which
has little impact on the NN’s performance. Thus the parameters given
in Table 2 are used. The NN training is carried out using the NVIDIA
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Fig. 3. The velocity field predicted by the proposed method at the baseline case, at time (a) 𝑡 = 50 s, (c) 𝑡 = 60 s and (e) 𝑡 = 70 s. The corresponding true values are also shown
for comparisons (b, d, f).
Table 3
The MRMSE between the predicted and the true flow fields during the whole time
period, for all the scenarios considered in this work, including (A) the baseline case,
(B1-B4) LIDAR measurements with various levels of noise, (C) half spatial resolution,
(D) half temporal resolution, (E) 20◦ LIDAR look direction, and (F) FSTI level of 1%.

Case Quantity (units) Range MRMSE

(A) Magnitude (m/s) [6.71, 9.52] 0.198
Direction (◦) [−6.03, 8.28] 2.77

(B1) Magnitude (m/s) [6.71, 9.52] 0.208
Direction (◦) [−6.03, 8.28] 2.75

(B2) Magnitude (m/s) [6.71, 9.52] 0.236
Direction (◦) [−6.03, 8.28] 3.32

(B3) Magnitude (m/s) [6.71, 9.52] 0.387
Direction (◦) [−6.03, 8.28] 3.73

(B4) Magnitude (m/s) [6.71, 9.52] 0.523
Direction (◦) [−6.03, 8.28] 4.35

(C) Magnitude (m/s) [6.71, 9.52] 0.212
Direction (◦) [−6.03, 8.28] 2.85

(D) Magnitude (m/s) [6.71, 9.52] 0.222
Direction (◦) [−6.03, 8.28] 2.66

(E) Magnitude (m/s) [6.70, 9.73] 0.281
Direction (◦) [11.4, 27.8] 2.46

(F) Magnitude (m/s) [6.71, 8.96] 0.204
Direction (◦) [−6.37, 6.13] 2.69

Tesla K80 GPU in this work with each training iteration requiring about
0.17 s. After training, the prediction of the flow field at any time instant
of interest requires about 0.012 s. These demonstrate that the proposed
method can meet real-time control requirement by pre-training and
online updating. We mention that training schemes based on transfer
learning could possibly decrease the computation time, which needs
further investigations and is outside the scope of the current work.
7

After the NN training, the unsteady velocity field during the con-
sidered period of 100 s is predicted by the deep NN. Three predicted
snapshots, at time 𝑡 = 50 s, 𝑡 = 60 s and 𝑡 = 70 s, along with the
corresponding true snapshots (i.e. the snapshots obtained by SOWFA),
are shown in Fig. 3. As can be seen, all the predicted snapshots agree
with the true snapshots very well. The wind direction and magnitude
have been well resolved (Cyclops’ dilemma), which is achieved because
the correlations between the LoS wind speed measured at different
locations are taken into account implicitly through NS residue terms
in the NN training procedure. Also, the downstream convection of flow
structures in the incoming wind is clearly captured. As shown from the
predicted flow fields in Fig. 3(a, c, e), a high-speed flow structure enters
the considered flow domain from the left at 𝑡 = 50 s, travels to the
middle at 𝑡 = 60 s, and hits the wind turbine at the right side of the
domain at 𝑡 = 70 s. This successful identification of the flow structure
and its downstream convection are of great interest. For example it
can be used for wind turbine control to mitigate the structural loads.
In [11], it was shown that significant wind turbine blade load reduction
was achievable by taking the coherent flow structures into account
in the wind turbine control design. The paper [11] assumed that the
coherent structures were known and fully measurable, and pointed out
that the prediction of the detailed incoming wind information would
play an important role in the level of load mitigation. Therefore, the
prediction results in our work fill this research gap by providing an
effective way for detailed flow predictions and flow structure detection.

The unsteady wind field visualization is given in the supporting
material of this paper, including both the prediction results and the
true results given by SOWFA (see Video 1). As shown in the video, the
unsteady flow details such as the convections of high-speed/low-speed
flow structures, are predicted accurately, which demonstrates the great
performance of the proposed prediction method.

To further quantify the accuracy of the proposed method, the mean
value of the root-mean-squared errors (MRMSE) between the predicted
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Fig. 4. The effective wind speed predicted by the proposed method for the baseline case at distances of 120 m, 80 m, 40 m, and 0 m before the turbine location. The corresponding
true values are also shown for comparisons.
Fig. 5. The instantaneous wind speed at turbine location predicted by the proposed method at the baseline case, at spanwise locations of 0 m, 15 m, and 30 m respectively. The
corresponding true values are also shown for comparisons.
and the true wind speed fields during the whole time period is given
in Table 3, which is defined as

𝜖𝑢 =
1
𝑇

𝑇
∑

𝑡=1

√

√

√

√
1

𝑁𝑡𝑒𝑠𝑡

𝑁𝑡𝑒𝑠𝑡
∑

𝑖=1
(𝑢∗𝑥𝑖 ,𝑦𝑖 ,𝑡 − �̂�𝑥𝑖 ,𝑦𝑖 ,𝑡)

2, (14)

where the total time 𝑇 is 100, the total number of test points 𝑁𝑡𝑒𝑠𝑡
is 3321, {[𝑥𝑖, 𝑦𝑖], 1 ≤ 𝑖 ≤ 𝑁𝑡𝑒𝑠𝑡} is the 81 × 41 uniform-grid test
points in the considered domain, and �̂�𝑥𝑖 ,𝑦𝑖 ,𝑡 and 𝑢∗𝑥𝑖 ,𝑦𝑖 ,𝑡 represent the
corresponding wind speed predictions and true values. Similarly, the
MRMSE between the predicted and true wind direction fields is defined
as

𝜖𝛾 =
1
𝑇

𝑇
∑

𝑡=1

√

√

√

√
1

𝑁𝑡𝑒𝑠𝑡

𝑁𝑡𝑒𝑠𝑡
∑

𝑖=1
(𝛾∗𝑥𝑖 ,𝑦𝑖 ,𝑡 − �̂�𝑥𝑖 ,𝑦𝑖 ,𝑡)

2, (15)

where �̂�𝑥𝑖 ,𝑦𝑖 ,𝑡 and 𝛾∗𝑥𝑖 ,𝑦𝑖 ,𝑡 represent the corresponding wind direction
predictions and true values. As shown in Table 3, the prediction perfor-
mance is quite satisfactory. The MRMSE is just 7.0% of the freestream
wind speed range at this baseline case.
8

We now demonstrate the potential use of the proposed prediction
method for wind turbine control. First the effective wind speed can
be extracted from the predicted spatiotemporal wind field, which is
defined as the wind speed averaged over the rotor plane and calculated
by

�̄�𝑥,𝑡 =
1
𝑁𝑦

𝑁𝑦
∑

𝑖=1
�̂�𝑥,𝑦𝑖 ,𝑡, (16)

where {[𝑥, 𝑦𝑖], 1 ≤ 𝑖 ≤ 𝑁𝑦} is a set of spatial points at a fixed distance
before the turbine location and uniformly distributed from −𝐷∕2 to
𝐷∕2 in the spanwise direction. Fig. 4 shows the effective wind speed
averaged over 𝑦 direction at 𝑥 = −130 m, 𝑥 = −90 m, 𝑥 = −50 m
and 𝑥 = −10 m, which correspond to 120 m, 80 m, 40 m and 0 m
before the turbine location respectively. The corresponding true values
extracted from SOWFA results are also shown. As can be seen, the
predicted effective wind speed matches with its true value very well.
We mention that the accurate prediction of the effective wind speed
is not unexpected as it is calculated based on the accurately-predicted
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Fig. 6. The velocity field predicted by the proposed method for the case where the measurement noise is of typical commercial LIDAR devices, at time (a) 𝑡 = 50 s, (c) 𝑡 = 60 s
and (e) 𝑡 = 70 s. The corresponding true values are also shown for comparisons (b, d, f).
spatiotemporal wind information. This can help wind turbine control
e.g. on power regulation and load reduction.

Second, the proposed method can predict the instantaneous wind
speed at various turbine locations. As shown in Fig. 5, three spanwise
locations, including 0 m, 15 m, and 30 m, are considered, which
correspond to the turbine blade root, 1∕2 chord length, and turbine
blade tip locations. The corresponding true values are also shown in
Fig. 5 for comparisons. As can be seen, the predicted instantaneous
wind speed matches with its true value quite well. This illustrates the
great potential of the proposed prediction method in the control of
smart rotors [49].

Last but not least, the proposed method can achieve short-term
wind forecasting. The extrapolation of the proposed method to future
time instants is examined. In particular, the time coordinates from
100 s to 115 s are fed to the deep NN for predicting the 15-second
ahead preview flow information. In order to test the proposed method’s
performance, another 15 s SOWFA simulations are carried out and the
wind field data are recorded. The prediction and the corresponding true
results from 100 s to 115 s are included in Fig. 5. As can be seen, the
overall instantaneous wind speed is predicted at satisfactory accuracy.
This is because the deep NN learns the dynamics of the evolving wind
field from NS equations during the training, and the learnt dynamics
is retained which enables the deep NN for short-term wind forecasting
without using Taylor’s frozen turbulence hypothesis [44]. As the ma-
chine learning model in this work is continuous in time, any future time
coordinate can be fed into the NN for prediction. Thus it avoids the
tedious tuning of time steps, time horizons and single-step/multiple-
step settings in discrete-time models. However, we mention that as in
all other wind prediction models, the prediction time horizon is still
limited by the correlations between the data used for predictions and
the quantities to be predicted.
9

3.3. Sensitivity analysis

The robustness of the proposed method is further verified by con-
sidering a wide range of scenarios including LIDAR measurements with
various levels of noise and under different LIDAR spatial/temporal
resolutions, different LIDAR look directions and different FSTI levels.
The prediction accuracy under all the considered scenarios is given in
Table 3.

Since LIDAR measurements are subject to various error sources such
as range weighting, the measurement noise must be considered in real-
world applications. Here, the spatiotemporal wind field reconstruction
from noisy LIDAR measurements is investigated, where random noise
is added to the LoS wind speed value measured by the LIDAR at
each measurement location at each time instant. The noise is drawn
from the range [−𝑒, 𝑒] uniformly and independently, where a set of
values of 𝑒 are considered including 0.025 m∕s, 0.05 m∕s, 0.1 m∕s, and
0.2 m∕s. These cases are denoted as Case B1, Case B2, Case B3, and
Case B4 in Table 3 respectively. For each case, the deep NN is trained
with the noisy measurement data and then used for predicting the
spatiotemporal wind field. The prediction MRMSEs for all the four cases
are given in Table 3. As expected, the prediction becomes less accurate
when the measurement noise increases. However, for all the cases, the
errors remain quite small compared to the wind speed range, which
demonstrates the method’s robustness against noisy measurements. As
suggested in [12], Case B3 here represents the typical noise of the com-
mercially available pulsed LIDAR instruments. Similar measurement
accuracy has been reported in the product guide of the continuous wave
LIDAR devices by ZXLidars (https://www.zxlidars.com). The predicted
spatiotemporal flow field for Case B3 is shown in Fig. 6. As can be
seen, the unsteady flow field is successfully predicted with main flow
structures identified correctly and the MRMSE remains quite small as
shown in Table 3, which indicate that the proposed method works
well with commercial LIDAR devices. Furthermore, we mention that

https://www.zxlidars.com
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Fig. 7. The velocity field predicted by the proposed method for the cases with low measurement resolutions, at time 𝑡 = 50 s, 𝑡 = 60 s and 𝑡 = 70 s. Sub-figures (a, d, g), (b, e, h)
and (c, f, i) are for the cases of half spatial resolution, half temporal resolution and true values respectively.
Fig. 8. The velocity field predicted by the proposed method for the case where the LIDAR look direction is 20◦, at time (a) 𝑡 = 50 s, (c) 𝑡 = 60 s and (e) 𝑡 = 70 s. The corresponding
true values are also shown for comparisons (b, d, f).
new methods such as Bayesian PINNs [32] are under active develop-
ment, which might offer new opportunities for the predictions with
lower-quality measurements.
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To further illustrate the proposed method’s great performance in
predicting the spatiotemporal information from very sparse measure-
ments, the cases with only half spatial/temporal LIDAR measurement
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Fig. 9. The velocity field predicted by the proposed method for the case where the FSTI level is 1%, at time (a) 𝑡 = 50 s, (c) 𝑡 = 60 s and (e) 𝑡 = 70 s. The corresponding true
values are also shown for comparisons (b, d, f).
resolutions are investigated. For the case with half spatial resolution,
the distance between the measurement points is set as 40 m and only 6
measurement points per LIDAR beam are used in the prediction. For the
case with half temporal resolution, the measurement frequency of the
LIDAR beams is set as 2 s. The prediction results are given in Fig. 7. As
can be seen, the flow field predictions are similar as in the baseline
case, which demonstrates the method’s robustness with various spa-
tiotemporal measurement resolutions. In addition, we mention that the
predictions here are based on the measurements at as few as 6 spatial
locations per LIDAR beam, while most existing works which follow the
PINNs framework have used a much larger set of measurement points.
Thus the results here also demonstrate the full potential of PINNs in
handling the situations of very sparse data. In addition, the prediction
accuracy for the half-spatial case and half-temporal case is just slightly
lower than the baseline case, which indicates the existence of data
redundancy in the space and time domain for the baseline case. This
problem might be solved by designing novel data acquisition strategies
for the PINNs to optimally place the measurement locations, which can
further increase the data quality and/or reduce the data redundancy.
Such strategies might lead to the design of the optimal LIDAR con-
figurations in wind industry, such as optimal half-angles, resolutions,
scanning patterns, and even the optimal coordination among LIDAR
beams. This task, however, is not trivial and requires extensive studies
on the problem formulation and the method development, thus is out
of the scope of the current paper.

In addition, as LIDAR can only measure the LoS wind speed, the
wind direction needs to be estimated (Cyclops’ dilemma). A different
LIDAR look direction is also considered here to further demonstrate the
proposed method’s ability in identifying the incoming wind direction.
The incoming wind’s mean direction is set as 20◦ from the turbine
facing direction. The results are given in Fig. 8. As can be seen,
the incoming wind direction is correctly identified, overcoming the
difficulties of estimating wind direction from only LoS wind speed data.
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The prediction MRMSE given in Table 3 shows that the prediction
errors for both wind magnitude and direction remain very small.

Furthermore a different turbulence level is considered, where the
FSTI of the turbulent atmospheric boundary layer is set as 1%. The
prediction results are given in Fig. 9, along with the corresponding
true values. As can be seen, the predictions match well with the true
flow fields. The MRMSE given in Table 3 also shows that the proposed
method performs very well in this case, similarly as all the other
considered cases.

4. Conclusions

In this paper, the prediction of the spatiotemporal wind field based
on sparse LIDAR wind speed measurements was investigated by using
physics-incorporated deep learning techniques. In order to achieve this,
a deep fully-connected neural network (which has a total of 12 layers
with the hidden-layer neuron number of 128) was first constructed,
and then the Navier–Stokes equations (which provide a very good
description of atmospheric boundary layer flows) were incorporated
in the neural network structure. The deep neural network structure
with a total degree of freedom of 149 378 can approximate complex
nonlinear systems governed by partial differential equations (such as
the Navier–Stokes system in this work), while the incorporation of
Navier–Stokes equations in the neural network training empowers the
deep neural network with the ability to learn the dynamics of the
evolving flow field over the whole domain of interest, even though
the LIDAR measurements are only available at a few sparse spatial
locations. To our knowledge, this is for the first time that physical laws
and data are fused in a unified manner in the training of deep learning
models for wind applications.

The proposed method was evaluated based on the high-fidelity
wind farm simulator SOWFA. The results showed that both the wind
magnitude and direction were predicted accurately, overcoming the
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Cyclops’ dilemma. This is because the correlations between the line-
of-sight wind speed measured at different locations were taken into
account implicitly through the Navier–Stokes residue terms. The un-
steady wind field predictions were compared with the corresponding
true values. A great match between prediction and true values was ob-
served with the mean value of the root-mean-squared error being only
0.198 m∕s for wind magnitude prediction and 2.77◦ for wind direction
predictions at the baseline case. In particular, the flow details such
as the propagation of the high-speed/low-speed flow structures were
captured by the proposed method. Thus it is expected that the proposed
method can lead to a significant reduction of turbine blade structural
loads through advanced blade control techniques which take these
predicted flow details as control input, especially under the smart rotor
concept [49]. To further demonstrate the potential use of the proposed
method in wind turbine control, the predictions of the averaged and
instantaneous wind speeds were examined. The results showed very
good matches between the prediction and true values. In addition,
they showed that the proposed method could achieve detailed short-
term wind forecasting. These results are apparently also very useful
for wind farm control and wind resource assessment. Furthermore, a
wide range of scenarios were investigated to demonstrate the proposed
method’s robustness, which included the LIDAR measurements with
various levels of noise and under different LIDAR spatial/temporal
resolutions, different LIDAR look directions and different turbulence
levels. The results showed that the proposed method performed very
well in all these scenarios.

By fusing LIDAR measurements and Navier–Stokes equations, the
proposed method achieved great accuracy in spatiotemporal wind pre-
dictions. However, we mention that its performance is still limited by
the underlying physical law’s ability in capturing the full dynamics of
the evolving wind. For example, the 3D flow structures and the thermal
effects are not captured by the current studies because the employed
Navier–Stokes equations are 2D. Therefore, future studies considering
more accurate physical models (e.g. 3D Navier–Stokes equations) are
needed to improve the prediction performance. In addition, the wind
prediction is also limited by the LIDAR measurement data’s ability
in characterizing the essential wind information. Therefore, it is of
great interest to investigate the optimal data acquisition design for the
proposed method. It is expected that the data quality will increase using
an optimized data acquisition design, which, in turn, will increase the
prediction accuracy further. Future research may also include the real-
world LIDAR measurement campaign to further validate the proposed
method.

As the predicted spatiotemporal flow field contains much more
information about the incoming wind than the original LIDAR mea-
surements, it is greatly useful in developing advanced strategies for
the wind resource assessment and for the monitoring and control of
wind turbine/farm, by using such rich flow information. This may
include the usage of the predicted spatiotemporal data for wind power
prediction, turbine load evaluation, extreme event forecasting, main-
tenance scheduling, etc. As the developed method is generic, another
research direction is the application of the developed method in the
state estimation and forecasting of other systems governed by partial
differential equations such as wave/tide energy systems and other flow
configurations such as wind over complex terrains.
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