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A machine-learning-based surrogate modeling method for distributed fluid systems is proposed in this paper,
where a dimensionality reduction technique is used to reduce the flowfield dimension anda regressionmodel is used to
predict the reduced coefficients from the input parameters. The surrogatemodelingmethod is specifically designed to
tackle the fluid systems involving distributed aerodynamic structures, and its performance is illustrated by the
application on the wake flow aroundwind turbine arrays in an atmospheric boundary layer. Themain idea is to first
decompose the whole fluid domain into subdomains, then carry out surrogate modeling for each subdomain by
treating both the boundary information and the distributed flow parameters as the input parameters, and finally
obtain the whole flowfield by combining the flowfield of each subdomain with the consideration of the matching
condition at the subdomain interface. The proposed surrogate modeling method is applied to two test cases: a one-
dimensional Poisson equation and a high-fidelity wind farmwakemodel. The results demonstrate the great efficiency
and accuracy of the surrogate model and its excellent scalability to distributed systems of different scales.

Nomenclature
a = bias term in autoencoder
b = bias term in neural network regressor
D = rotor diameter
d = distributed parameters
g = forward transform of dimensionality reduction
ĝ−1 = inverse transform of dimensionality reduction
I = flow quantities at subdomain interface
K = number of distributed structures
l = one-dimensional domain length
M = regression model
N = size of training samples
Nh = hidden-layer neuron number
Nr = dimension of the reduced coefficients
q = heat source term
S = magnitude of the heat source
T = temperature
TL = temperature at the left boundary
TR = temperature at the right boundary
U = flowfield by computational fluid dynamics simulations
Ur = reduced representations of the flowfield
Û = flowfield predicted by surrogate model
v = weight matrix in autoencoder
w = weight matrix in neural network regressor
Z = collection of flowfields
α = proper orthogonal decomposition coefficient
α = vector of proper orthogonal decomposition coefficients
αNN = L2 regularization coefficient in neural network training
β = thermal diffusivity
γ = wind turbine yaw angle
ϵall = overall prediction error
ϵmr = dimensionality reduction error
μ = input parameter
ν = proper orthogonal decomposition basis
σ = neural network activation function

Ω = parameter space
I = indicator function

I. Introduction

C OMPUTATIONAL fluid dynamics (CFD) is an important tool
for investigating complex flow problems. It has been used in

many engineering and scientific applications, e.g., aircraft design,
weather forecasting, and turbulence research. However, despite the
fast development of high-performance computing (HPC) technology,
the use ofCFD for repetitive and real-time tasks (such as optimization
and real-time control) is still highly challenging due to the require-
ment of enormous computational resources and long simulation time.
For instance, the three-dimensional (3-D)Reynold-averagedNavier–
Stokes simulation typically requires hundreds/thousands of CPU
hours, while large eddy simulations (LESs) and the direct numerical
simulations require even more computational resources. Therefore,
surrogate modeling, which aims at constructing an efficient yet
accurate approximation to the full CFD model, has attracted a lot
of attention, such as in aeroelastic computations [1], aerodynamic
load evaluations [2], uncertainty quantification of turbulence models
[3], and combustion modeling [4].
Reduced basis methods, such as proper orthogonal decomposition

(POD) [5–7] and dynamic mode decomposition [8], have been used
in surrogate modeling. The basic idea of surrogate modeling using
reduced basis methods is to decompose the flow dynamics into
several reduced bases, which can be interpreted as the coherent
structures or modes of the flow. Then, the original high-dimensional
flowfield can be represented by the reduced coefficients of a much
lower dimension, with each dimension representing a mode. This
type of method has advantages in physical interpretations and can be
used to analyze the energy content and the frequency of the coherent
structures. On the other hand, due to the fast development and
democratization of machine learning algorithms, surrogate modeling
techniques based on machine learning are getting attention in recent
years, such as in the aerodynamic simulations with consideration of
multiple operating conditions [9] and in the simulations of single-
injector combustion process [10].
The surrogate modeling using machine learning techniques can be

classified into two categories.One approach is to directly formulate the
surrogate modeling of fluid systems as a supervised machine learning
problem and employ the state-of-the-art machine learning technique
(e.g., deep learning) to train the model [11,12]; then, the trained
machine learning model can serve directly as the emulator of the
original CFD model. This approach can be quite effective if enough
training data are available. However, the generation of training data is
very expensive because a lot of high-fidelity simulations are required to
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cover the input parameter space. Another approach is to first reduce the
high-dimension flowfield into its low-dimension representation; then,
a supervised machine learning problem is formulated to predict the
reduced coefficients of the flow dynamics given the input parameters.
The latter approach is the focus of our paper because it usually requires
less training data than the former one.
The combination of POD and supervised machine learning has

been investigated recently. In Ref. [13], Hesthaven and Ubbiali
proposed a surrogate modeling technique called POD-NN, where
PODwas used to extract the reduced basis and a neural network (NN)
was used for approximating the map between flow parameters and
the POD coefficients. The combination of POD and other machine
learning techniques (i.e., Gaussian process regression) was investi-
gated in Refs. [14,15], and it was tested on a set of numerical
examples. The potential to incorporate physical constraints was
investigated in Ref. [16]. They proposed the use of particular solu-
tions in the POD expansion to enforce certain constraints, e.g.,
boundary conditions. In addition, a set of supervised machine learn-
ing techniques was considered, including NN, multivariate polyno-
mial regression, k nearest neighbors, and decision trees. All the
aforementioned work employed POD for dimensionality reduction.
The general framework of the surrogate modeling method devel-

oped in this paper is shown in Fig. 1, where fμ0; μ1; : : : ; μNg,
fU0;U1; : : : ;UNg, and fUr

0;U
r
1; : : : ;U

r
Ng represent the training sam-

ples of the input parameters, the corresponding CFD flowfields, and
the reduced coefficients of the flowfields; and μtest, Ur

test, and Ûtest

represent the input parameter of interest, the predicted reduced coef-
ficients of the flow, and the full flowfield prediction. Various dimen-
sionality reduction techniques can be used in this framework as long
as both the forward and the inverse transforms are available. The
surrogate modeling framework consists of the offline and online
stages. In the offline stage, as shown by the solid, arrowed lines,
multipleCFDsimulations are carried out to generate the flowfield data
using a set of input parameters obtained by a sampling strategy (e.g.,
Latin hypercube sampling). Thegenerated flowfields are then reduced
to their low-dimension representations by a dimensionality reduction
technique, and a regression model is constructed to approximate the
mapping from the input parameters to the reduced coefficients. The
regressionmodel canbe a simple curve fittingor a complex supervised
machine learningmodel.As for the dimensionality reduction, it can be
achieved by either traditional reduced basis methods or machine
learning techniques. In fact, dimensionality reduction in machine
learning shares a lot of similarities with model reduction in scientific
computing. For example, principal component analysis in machine
learning is equivalent to POD in scientific computing in certain senses
[7]. Once the offline stage is completed, the online stage, as shown by
the dashed, arrowed lines, is carried out by propagating the input
parameter of interest to the reduced coefficients through the regression
model and then predicting the flowfield by the inverse transformof the
dimensionality reduction process. In this paper, three-dimensionality
reduction techniques arising from both scientific computing and
machine learning are investigated, including POD, independent com-
ponent analysis (ICA) [17], and autoencoder (AE) [18].
Another novelty of this paper is that it extends the proposed

surrogate modeling method to tackle distributed flow problems.
Distributed fluid systems are quite common in daily life and indus-
trial applications, such as the natural convection of a heater array in
heat exchangers [19,20], the distributed roughness elements in boun-
dary-layer control [21], the heat transfer of a building array in a
turbulent boundary layer [22], and the wake interactions of wind
turbines within a wind farm [23–25]. The numerical simulation of
such systems usually requires a lot of computational resources, and
the optimization/control of such systems is very difficult because the

repetitive evaluations of CFD models with distributed flow parame-
ters are needed. Thismotivates thework in this paper on the surrogate
modeling of distributed systems, which has not been investigated yet
in the literature. A suitable surrogatemodelingmethod for distributed
systems should have the following features:
1) The surrogatemodel can simulate the fluid systemwith different

flow parameters and preferably different layouts.
2) The method should be scalable such that the surrogate model

can simulate the distributed system of different scales.
In this paper, a scalable surrogate modeling method for distributed

fluid systems is proposed, where the whole fluid domain is first
decomposed into subdomains; then, the surrogate modeling for each
subdomain is carried out by treating both the boundary information
and the distributed flow parameters as the input parameters; finally, the
whole flowfield is obtained by coupling the flowfield of each sub-
domain altogether with the consideration of the matching condition at
the subdomain interface. The information exchange at the subdomain
interface needs to be tackled specifically according to the types of the
problems. Here, an iterative updating process is introduced for diffu-
sion-dominant problems since each subdomainhas an impact on all the
other subdomains,whereas a sequential prediction process is sufficient
for convection-dominant problems because the impact of the down-
stream structures on the upstream flow can be ignored.
Two test cases are used to demonstrate the efficiency, accuracy, and

scalability of the proposed surrogate modeling method. The first one
is the one-dimensional (1-D) Poisson equation, which is used to
represent the application of the proposed method to diffusion prob-
lems. Then, a large-scale industrial application (the surrogate model-
ing ofwind farms) is investigated. The simulator for onshore/offshore
wind farm applications (SOWFA) [26], an LES solver developed for
the 3-D flow simulation around a wind turbine array, is used to
generate the high-fidelity data. The application in wind farms aims
at capturing thewake interactions betweenwind turbines, which have
a large impact on the plant’s overall performance. In the literature, a
range of models has been developed to investigate the wake inter-
actions [27], including the high-fidelity LESmodels and low-fidelity
analytical models. In high-fidelity simulations, the turbine rotors
were usually represented as actuator disks [28] or actuator lines
[29]. The simulations were carried out in Refs. [30,31] using both
methods. Although the high-fidelity simulations can predict the
turbine wakes accurately, they are too slow for wind farm control
design. Low-fidelity wake models are still the main tools for fast
wake predictions. Suchmodels include the Jensenmodel [32,33], the
Frandsen model [34], the FLOwRedirection and Induction in Steady
State (FLORIS) model [35], and the model proposed in Ref. [36]. To
retain the reliability of the high-fidelity model while achieving much
faster predictions, data-driven surrogate modeling provides an alter-
native way to model wind farms. The surrogate modeling of a single
turbine was studied in Refs. [37,38], where the wake prediction was
presented. In Ref. [39], the surrogate modeling of two turbine cases
was investigated, but the scalability to the wind farm was not con-
sidered. In this paper, we apply the proposed surrogate modeling
approach for the challenging issue of wind farmwake modeling. The
results show that the surrogate model predicts the wind farm wake
flow efficiently and accurately, with the root-mean-squared error
being only 2% of the freestream wind speed.
The remaining part of this paper is organized as follows: the

machine-learning-based surrogate modeling method for distributed
fluid systems is described in Sec. II. The proposed method is applied
to a diffusion-dominant problem (more specifically, 1-D Poisson
equation) and a convection-dominant problem (more specifically,
wind farm simulations) in Sec. III to demonstrate its scalability,
efficiency, and accuracy. Finally, the conclusions are drawn in Sec. IV.

Fig. 1 The general framework of the machine-learning-based surrogate modeling.

2 Article in Advance / ZHANG AND ZHAO

D
ow

nl
oa

de
d 

by
 8

1.
10

2.
47

.1
4 

on
 D

ec
em

be
r 2

9,
 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
1.

J0
59

87
7 



II. Machine-Learning-Based Surrogate Modeling
of Distributed Fluid Systems

In machine learning, dimensionality reduction is usually used to
reduce high-dimension training input into its low-dimension repre-
sentation before feeding it into a regression/classification model. For
surrogate modeling of fluid systems, however, the goal is to predict
the high-dimension flowfield giving a few input parameters. The
direct construction of a regression model to predict the high-dimen-
sion flowfield is prone to overfitting, especially when there are not
enough training data available. Therefore, the idea of surrogate
modeling for fluid systems is to first reduce the high-dimension
flowfield into their low-dimension representation, then predict the
reduced coefficients from the input parameters, and finally recon-
struct the flowfield based on the reduced coefficients. One way to
achieve this is the use of reduced basismethods (e.g., POD) as is done
in Refs. [13–16].
We briefly describe the reduced basis method and then illustrate

the equivalence of reduced basismethod and othermachine-learning-
based dimensionality reduction techniques in the context of surrogate
modeling. GivenN samples of input parameters !μ0; μ1; : : : ; μN " and
the corresponding CFD flowfields Z # !U0;U1; : : : ;UN ", the POD
basis fν1; ν2; : : : ; νk; : : : g can be constructed by the singular value
decomposition

Z # VΣWT (1)

where νk is the kth column vector of V. Then, after choosing the
number of the PODbasis asNr, the flowfield can be approximated by

~U$μi% #
XNr

k#1

αk$μi%νk (2)

where the POD coefficientsα$μi% # !α1$μi%;α2$μi%; : : : ; αNr
$μi%" are

the reduced coefficients of the original flowfield U i. Then, a regres-
sion model M can be trained based on the training input
!μ0; μ1; : : : ; μN " and the training target !α$μ0%;α$μ1%; : : : ;α$μN%"
such that

M$μi% ≈ α$μi% (3)

After training, the prediction of the flowfield can then be given by

Û$μtest% #
XNr

k#1

!M$μtest%"kνk (4)

where μtest is the input parameter of interest. In fact, the reduced basis
method here can be viewed as a dimensionality reduction technique
in machine learning, where the forward transform g and the inverse
transform ĝ−1 are defined as

!g$U%"k # hU; νki; 1 ≤ k ≤ Nr (5)

ĝ−1$α% #
XNr

k#1

αkνk (6)

where hi denotes the inner product. From the preceding formulation,
it is clear that the use of reduced basis methods in surrogate modeling
can be replaced by any other dimensionality reduction techniques in
machine learning as long as there exist both the forward transform g,
which maps the flowfield into the reduced coefficients, and the
inverse transform ĝ−1, which maps the reduced coefficients to the
approximation of the flowfield. After dimensionality reduction and
regression model training, the flowfield can then be predicted by

Û$μtest% # ĝ−1$M$μtest%% (7)

The proposed surrogate modeling procedure is summarized as
Algorithm 1. In this work, the fully connected NN with one hidden

layer is chosen as the regression model. POD, ICA, and AE are
employed for dimensionality reduction. Hereby, these methods are
referred as POD-NN, ICA-NN, and AE-NN. The machine learning
packages Scikit-learn [40] and Keras [41] are used to facilitate the
implementation of the proposed algorithm.

A. Regression Model

The regression model used in this work is a fully connected NN
with one hidden layer, as illustrated in Fig. 2; and the corresponding
input–output relation can be expressed as

h # σ$w1x& b1%;

y # w2h& b2 (8)

where w1, b1, w2, and b2 are the training variables; and σ is the
activation function. N1, N2, and N3 in Fig. 2 represent the input
dimension, the hidden-layer neuron number, and the output dimen-
sion. The NN training process involves the updating of the corre-
sponding weights wij based on the gradient ∂J∕∂wij, where J is the
objective function to be minimized. Automatic differentiation is
employed to calculate the gradients. The mean-squared error
(MSE) between the target and the NN output is chosen as the
objective function where a L2 regularization term is further added
in order to tackle overfitting. The Adam optimization algorithm [42]
is used for NN training in this work.

B. Dimensionality Reduction

Three types of dimensionality reduction techniques (i.e., POD,
ICA, and AE) are employed in this paper to demonstrate the feasibil-
ity of using any dimensionality reduction technique with an inverse
transform in the proposed surrogate modeling framework. As most
of the previous studies were based on POD, this work investigates
the use of ICA and AE as the alternative dimensionality reduction
technique in the context of surrogate modeling. ICA is a popular
technique first developed for signal processing, and it can be used for
general purpose dimensionality reduction. The interested readers
may refer to Ref. [43] for more details. AE is a machine learning

Fig. 2 The illustration of a fully connected NN with one hidden layer.

Algorithm 1: The surrogate modeling method using machine
learning

1: % Offline process
2: Generate N samples of the input parameters: !μ0; μ1; : : : ; μN ".
3: Run the high-fidelity CFD solver N times to generate the flowfield

Z # !U0;U1; : : : ;UN ".
4: Use a chosen dimensionality reduction technique to obtain the reduced

coefficients !Ur
0;U

r
1; : : : ;U

r
N " and the corresponding forward and inverse

transforms g and ĝ−1.
5: Train the regression modelM using the training input !μ0; μ1; : : : ; μN "

and the training target !Ur
0;U

r
1; : : : ;U

r
N ".

6: % Online process
7: Set the input parameter of interest μtest.
8: Predict the flowfield as ĝ−1$M$μtest%%.
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technique thatmakes use ofNN to encode a high-dimension input to a
low-dimension latent space and then decode it back. It consists of an
encoder NN and a decoder NN, and it is trained in a self-supervised
manner. The AE used in this work is illustrated in Fig. 3, where three
hidden layers are included in the NN structure. The encoder part can
be expressed as

e # σ$v1x& a1%;

z # v2e& a2 (9)

where v1, a1, v2, and a2 are the training variables of the encoder;
whereas the decoder part can be expressed as

d # σ$v3z& a3%;

x' # v4d& a4 (10)

where v3,a3, v4, anda4 are the training variables of the decoder.M1,
M2, and M3 in Fig. 3 represent the original data dimension, the
hidden-layer neuron number, and the reduced data dimension. In this
work, for simplicity, the hidden-layer neuron numbers of the encoder
and the decoder are assumed to be the same and are set as twice of the
reduced dimension. The NN training is carried out using the Adam
optimization algorithm to minimize theMSE between the NN output
and its target value. The target value is the same as the input of the
training dataset; thus, it is termed as self-supervised training.

C. Extension to Distributed Flow Problems

The surrogate modeling method is extended to tackle distributed
flow problems here. A typical example of a distributed fluid system is
illustrated in Fig. 4,whereM cylinders of diameters fd1; d2; : : : ; dMg
are positioned in a rectangular flow domain. The cylinder diameter is
the distributed parameter in this example and, in fact, the distributed
parameter can be an array of any other properties of the structures

(the surface roughness, thermal conductivity, etc.). The surrogate
modeling of this problem is formulated as how to construct amodel to
predict thewhole flowfield around the cylinder array given the values
of d1; d2; : : : ; dM. The method proposed in the previous section can
be used directly by treating !d1; d2; : : : ; dM" as the input parameter μ.
However, this approach has two fundamental flaws:
1) The training of the surrogate model requires a significant

number of CFD evaluations because the whole flow domain simu-
lation is regarded as a single training sample and the dimension of μ is
very high, such that a large sample size is required in order to cover
the input parameter space.
2) The so-constructed surrogate model is not scalable because it

can only be used to simulate the distributed system of the same scale
as the training samples.
The scalable surrogate modeling method proposed in our paper

can solve these issues. First, the whole flow domain is decomposed
into subdomains, with each subdomain containing one distributed
structure, as illustrated by the dashed rectangle in Fig. 4. Then, the
surrogatemodeling is carried out for each subdomain by treating both
the distributed parameter of the structure inside the subdomain and
the boundary information as the input parameter μ. Finally, the
flowfields of all the subdomains are combined together with the
consideration of the matching condition at the subdomain interface.
The proposed approach is inspired naturally by the domain decom-
position in high-performance computing in CFD, where the whole
domain/mesh is divided into subdomains/blocks and each Message
Passing Interface (MPI) thread handles only its assigned subdomain
with the interface information exchange between MPI threads. The
approach can be viewed as employing the surrogate model of indi-
vidual subdomain to replace the task of eachMPI thread, thus greatly
reducing the online prediction time. The whole surrogate modeling
procedure is summarized as Algorithm 2, where an iterative process
is introduced to update the flow quantities at the interface in order to
enforce the physical constraints at the interface. The detailed updat-
ing rule in line 12 of Algorithm 2 is problem dependent. Two
numerical examples are given in the rest of the paper with the detailed
implementation of the updating rules.

III. Numerical Results
The application of the proposed method on the 1-D Poisson

equation and on wind farm wake modeling is described in this
section. The first test case demonstrates the accuracy, efficiency,
and scalability of the proposed surrogate modeling method in
diffusion-dominant problems. The second test case further demon-
strates the ability of the proposed method in modeling large-scale
fluid systems.

A. Application on 1-D Poisson Equation
1. Problem Setup

The 1-D steady-state heat transfer with distributed heat sources
under consideration is illustrated in Fig. 5, where a 1-D domain of
length l is shown with K uniformly distributed heat sources of
magnitudes !S1; S2; : : : ; SK ". It can be described by the following
equation:

Fig. 3 The illustration of an AE with three hidden layers in the NN
structure.

Fig. 4 A typical example of a distributed fluid system.
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−β
∂2T
∂x2

# q$x% (11)

where the heat source term

q #
XK

i#1

SiI!i−$2∕3%"$l∕K%<x<!i−$1∕3%"$l∕K%

and the boundary condition is given as T$0% # T0 and T$l% # Tl.
Here, I represents the indicator function. The surrogate modeling of
this problem aims at predicting the temperature field efficiently, given
the boundary conditions (T0 and Tl) and the distributed parameters
!S1; S2; : : : ; SK ".
In the following, the length of each subdomain l∕K is set as one

and the thermal diffusivity β is set as one. The FTCS (which stands for
forward-time central space) scheme is implemented for numerically
solving the equation. The mesh-dependence study shows that a uni-
form mesh of size 1∕80 is sufficient. All calculations are deemed
convergent when the root-mean-square error (RMSE) of the temper-
ature profiles between two consecutive time steps is less than 10−6.

2. Results

First, the surrogate modeling of a subdomain with a single heat
source is carried out. Four hundred samples of the input parameters
!μ0; μ1; : : : ; μ400" in the parameter space

Ω # !−5.0; 5.0" × !−5.0; 5.0" × !−5.0; 5.0"

are generated using Latin hypercube sampling, where μi #
!Si; TLi; TRi" with Si, TLi, and TRi representing the magnitude of
the heat source, the temperature at the left boundary, and the temper-
ature at the right boundary of the ith sample. Then, the Poisson
equation in a domain of length l∕K is solved numerically for each
sample of the input parameters to generate the temperature profiles.
The generated data are then split into two parts: 320 training and
validation samples and 80 test samples.

Three surrogate modeling methods (i.e., POD-NN, ICA-NN, and
AE-NN) are employed to build surrogate models to predict the
temperature profilewith themagnitude of the heat source, the temper-
ature at the left boundary, and the temperature at the right boundary as
the model input. The temperatures at both boundaries and heat
sources are scaled to zero mean and unit variance separately before
feeding into the NN for training. The learning rate is set as 10−3. A
grid-search procedure is carried out to determine the optimal hyper-
parameters in the dimensionality reduction and regression models,
based on four-fold cross-validation errors. The optimal hyperpara-
meters, the dimensionality reduction errors, and the prediction errors
are given in Table 1 for all three methods, where Nr represents the
dimension of the reduced coefficient,Nh represents the hidden-layer
neuron number of the NN regressor, and αNN represents the L2
regularization coefficient of the NN regressor. The optimal hyper-
parameter is chosen from the parameter space

ΩNr×Nh×ActFun×αNN # f2;3;4;5;6;7g× f4;6;8;10;12g× ftanh; relug

× f10−6;10−5;10−4;10−3;10−2;10−1g

The dimensionality reduction error ϵmr is defined as the RMSE
between ĝ−1$g$U test%% and U test; and the prediction error ϵall is

Fig. 5 The 1-D steady-state heat transfer problem under consideration.

Table 1 The optimal hyperparameters of the three surrogate
modeling methods for the 1-D Poisson case

Surrogate
modeling
method Nr Nh

Activation
function αNN ϵmr ϵall

POD-NN 3 10 relu 10−6 2.47 × 10−5 2.68 × 10−3

ICA-NN 3 12 relu 10−1 2.47 × 10−5 5.86 × 10−2

AE-NN 3 8 relu 10−2 2.41 × 10−3 9.30 × 10−3

relu = rectified linear unit.

Algorithm 2: The surrogate modeling method for distributed flow problems

1: % Offline process
2: GenerateN samples of the input parameters: !μ0; μ1; : : : ; μN ", where μi # !di; Ii". Note that di represents the distributed parameters of a single structure and Ii

represents the flow quantities at the subdomain boundary.
3: Run the high-fidelity CFD solver multiple times to obtain the flowfields in a single subdomain !U0;U1; : : : ;UN ", where U i is generated with the distributed

parameter di and the boundary condition is given by Ii.
4: Carry out surrogate modeling using Algorithm 1. Then, the flowfield in a single subdomain Ûtest can be predicted by the surrogate model given !dtest; Itest".
5: % Online process
6: Set the distributed parameters of all the K structures: ! ~d1; ~d2; : : : ; ~dK ".
7: Initialize the flow quantities at the boundary of each subdomain ! ~I1; ~I2; : : : ; ~IK ".
8: while True, do
9: for j # 1 to K, do
10: Predict the flowfield ~Uj in jth subdomain given the input parameter ~dj and boundary information ~Ij.
11: end for
12: Update ! ~I1; ~I2; : : : ; ~IK " based on the surrogate model prediction from both sides of the interfaces.
13: if the changes of ! ~I1; ~I2; : : : ; ~IK " are very subtle, then
14: The updating process converges. Break.
15: end if
16: end while
17: Combine ! ~U1; ~U2; : : : ; ~UK " to obtain the prediction of the whole flowfield.
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defined as the RMSE between ĝ−1$M$μtest%% and U test, where μtest is
the set of test parameters and U test is the corresponding temperature
profiles obtained by the numerical solver. The comparisons of the
temperature profiles between the surrogate model predictions and
numerical solutions for four randomly selected test cases are shown
in Fig. 6, including the results given by POD-NN, ICA-NN, and AE-
NN. As can be seen, the temperature profiles given by POD-NN
match perfectly with the ones given by the numerical solver. There-
fore, POD-NN is used in the following for the surrogate modeling of
the distributed systems.
For the prediction of the temperature profile of a whole domain

with distributed heat sources, the initialization and updating of the
temperature at the subdomain boundary need to be specified. Here,
the temperatures are initialized randomly between T0 and Tl for the
internal subdomain interfaces; and the boundary conditionsT0 andTl

are imposed for the most left and the most right subdomains. Then,
the updating process aims at matching T and ∂T∕∂x at the subdomain
interface, because it can be derived that the temperature and the first-
order derivative of the temperature need to be continuous at the
interface.

The results for the case of the domain length of l # 5 with K # 5
heat sources are given here to illustrate the surrogate model’s scal-
ability. One hundred samples of the distributed parameters and the
corresponding numerical solutions are generated in order to assess
the accuracy of the surrogate model. The comparisons of the temper-
ature profiles between the surrogatemodel predictions and numerical
solutions for four randomly selected test cases are shown in Fig. 7.
The RMSE of the surrogate model predictions compared to the high-
fidelity numerical solutions averaged over all the test samples is
3.77 × 10−2. The results clearly demonstrate that the proposed sur-
rogatemodel predicts the distributed heat transfer problem efficiently
and accurately.

B. Surrogate Modeling of Wind Farms
1. Wind Farm Model

The high-fidelity flowfield data are needed for the surrogate
modeling of wind farms. In this work, the simulator for onshore/
offshore wind farm applications is employed for CFD data genera-
tion. The SOWFA is a numerical solver developed based on Open-
FOAM for the 3-D large-eddy simulation of wind flow around wind

Fig. 7 The prediction results of a domain with five uniformly distributed heat sources.

Fig. 6 The prediction results of a subdomain with a single heat source.
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turbine array in the atmospheric boundary layer, where the turbine
rotors are represented by actuator disks or actuator lines. The detailed
implementations and the validations of the SOWFA can be found in
Refs. [29,44].
For wind farm simulations, a precursor simulation of a neutral

atmospheric boundary layer is first carried out to obtain the initial
flowfield and inflow boundary conditions; then, wind farms are simu-
lated using actuator line method (ALM). A top view of the simulation
domain at hub height is given in Fig. 8. The size of the simulation
domain is 3000 × 3000 × 3000 m, with the inflowwind coming from
a southwest direction. For the mesh generation, a two-level local mesh
refinement is used, as is suggested in Ref. [45]. The outer mesh
dimension is 12 × 12 × 12 m, the inner mesh dimension is 3 × 3 ×
3 m, and the dimension of the mesh in between is 6 × 6 × 6 m. The
total number of cells is 1.8 × 107. In thisway, themesh size around the
turbine rotors is 3 m so that the simulation can capture the detailed
turbinewakedynamics.ThreeNationalRenewableEnergyLaboratory
5MWbaseline turbines are positioned in the simulation domainwith a
five-rotor-diameter spacing in the downstream direction. The rotor
diameter of this baseline turbine (denoted as D hereafter) is 126.4 m.
For each simulation case, 1500 s simulations are carried outwith a time
step of 0.02 s. Each case requires around 44 h using 256 processors in
the local HPC clusters. After LESs, the mean velocity field is obtained
by averaging the instantaneous flowfield from 400 to 1400 s. The
surrogate modeling in the following part aims at predicting the two-
dimensional (2-D)meanvelocity field at turbine hub height efficiently,
given the inflow conditions and the yaw angles of all the turbines
!γ1; γ2; : : : ; γK " for a wind farm consisting of K turbines.

2. Results

First, the surrogate modeling of a subdomain containing a single
turbine is carried out. For the high-fidelity data generation, the wind
farm simulation is carried out for the case with three turbines in a
row, as is illustrated in Fig. 8. Three inflow wind velocities (i.e., 8, 9,
and 10 m∕s) are considered with a freestream turbulence intensity
of 6%. For each wind velocity, 30 samples of turbine yaw angles
!γ0; γ1; : : : ; γ30" in the parameter space

Ω # !−30.0°; 30.0°" × !−30.0°; 30.0°" × !−30.0°; 30.0°"

are generated using Latin hypercube sampling, where γi # !γ1i ; γ2i ; γ3i "
with γ1i , γ

2
i , and γ

3
i representing the yaw angles of the first, second, and

third turbines of the ith sample. Then, the SOWFA is used for gen-
erating the flowfield for each yaw setting. In total, 90 simulations are
carried out. The flowfield of each subdomain containing one turbine is
then extracted as a single data sample.One such subdomain is shown in
Fig. 8. Therefore, 270 data samples are available for the surrogate
modeling of the flowfield around one turbine. The data samples are
then split into two parts: 216 training and validation samples, and 54
test samples.
After completing offline data generation, three surrogate modeling

methods (i.e., POD-NN, ICA-NN, andAE-NN) are employed to build
surrogate models to predict the flowfield in a single subdomain with
the turbine yaw angle and the wind speeds at 30 uniformly distributed
discrete points along the inflow boundary as the model input. The yaw
angles and the inflow velocity profiles are scaled to zeromean and unit
variance separately before feeding into the NN for training. The

Fig. 8 A top view of the simulation domain at turbine hub height.
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learning rate is set as 10−3. A grid-search procedure is carried out to
determine the optimal hyperparameters in the dimensionality reduc-
tion and regression models, based on four-fold cross-validation errors.
The optimal hyperparameters, the dimensionality reduction errors, and
the prediction errors are given in Table 2 for all three methods, where
the optimal hyperparameter is chosen from the parameter space

ΩNr×Nh×ActFun×αNN # f5; 10; 15; 20; 25; 30g × f10; 20; 30; 40; 50g

× ftanh; relug × f10−6; 10−5; 10−4; 10−3; 10−2; 10−1g

a) f = 16.5°, freestream inflow

b) f = 11.6°, upstream wake
Fig. 9 The comparisons between ICA-NN predictions and high-fidelity simulations.

a) f = 16.5°, freestream inflow

b) f = 11.6°, upstream wake
Fig. 10 The comparisons between POD-NN predictions and high-fidelity simulations.

Table 2 The optimal hyperparameters of the three surrogate
modeling methods for the wind farm case

Surrogate
modeling
method Nr Nh

Activation
function αNN ϵmr ϵall

POD-NN 15 50 relu 10−5 5.35 × 10−2 1.67 × 10−1

ICA-NN 20 50 tanh 10−1 4.45 × 10−2 1.29 × 10−1

AE-NN 15 50 relu 10−4 7.74 × 10−2 1.64 × 10−1

a) f = 16.5°, freestream inflow

b) f = 11.6°, upstream wake
Fig. 11 The comparisons between AE-NN predictions and high-fidelity simulations.
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The dimensionality reduction error ϵmr is defined as the RMSE
between ĝ−1$g$U test%% andU test; and the prediction error ϵall is defined
as the RMSE between ĝ−1$M$μtest%% andU test, where μtest is the set of
test inflow conditions and yaw angles and U test is the corresponding
2-D velocity fields obtained by the SOWFA.
After NN training, the predictions of single turbine wakes are

carried out and the results are compared with the SOWFA results
for all 54 test cases. Two typical test cases (the first one with the
turbine operating in freestream inflow and the second one with the
turbine operating in the upstream wake) are shown in Figs. 9–11,
where the flowfields are predicted by ICA-NN, POD-NN, and AE-
NN, respectively. The relative error is defined as the absolute error of

the surrogate model prediction divided by the inflow mean velocity.
As can be seen, the overall flowfields predicted by all three methods
match with the SOWFA results quite well. As the turbine wake
evolves from upstream to downstream, the wake profiles at different
streamwise locations (from one rotor diameter (X # −1D) in front of
the turbine to four rotor diameters (X # 4D) behind the turbine) are
investigated in order to further examine the prediction performance.
As shown in Fig. 12a, a freestream inflow at X # −1D travels
downstream and hits the turbine rotor at X # 0D. The generated
wake then travels fromX # 1D toX # 4D in the deflected direction
caused by the yaw effects while slowly recovering toward the free-
stream conditions and reaching a Gaussian-shape profile at X # 4D.

a) f = 16.5°, freestream inflow b) f = 11.6°, upstream wake
Fig. 12 The velocity profiles for the one-turbine cases by ICA-NN (dashed) and high-fidelity simulations (solid).

a) 8m/s, f = (16.5°, 4.69°, –22.9°) b) 9m/s, f = (2.56°, 15.7°, 4.11°)

c) 10m/s, f = (–6.98°, –15.4°, –23.4°)
Fig. 13 The comparisons between ICA-NN predictions and high-fidelity simulations for three-turbine cases.
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At the same time, the wake expands in the spanwise direction as the
wake deficit decreases. As for the case shown in Fig. 12b, the inflow
atX # −1D is ofGaussian shape,which is generated by the upstream
turbines; and thewake development fromX # 0D toX # 4D shows
similar features as in the freestream case. In summary, the velocity
profile predictions match perfectly with the high-fidelity simulation
results at all streamwise locations; and all the main flow features
(such as the wake recovery, the wake deflection, and the wake
expansion) are captured very well by the surrogate model under
various turbine yaw and inflow conditions. As ICA-NN is the best
among all three methods in terms of the prediction error, as shown in
Table 2, it is used in the following for the surrogate modeling of wind
turbine arrays.
The prediction of the flowfield around distributed wind turbines

follows from Algorithm 2. As the problem here is convection dom-
inant, the iterative updating process in Algorithm 2 is ignored and the
flow quantities at the subdomain boundary are directly imposed
according to the upstream surrogate model predictions. Specifically,
the turbines’ relative positions are first determined according to the
wind direction and turbine coordinates. Then, the wind fields around
the front turbines are predicted by a surrogate model with their yaw
angles and the freestream inflow profile as the model input. Next, the
flowfields around subsequent turbines are predicted similarly, but
with the inflow profile extracted from the surrogate model prediction

of the corresponding upstream subdomains. In this way, the flowfield
in the whole wind farm can be obtained.
The results of a wind farm with three turbines in a row are given

here to test the surrogatemodel’s accuracy, efficiency, and scalability.
Twenty samples of turbine yaw angles are generated, and the SOWFA
is employed to generate the high-fidelity test data in order to assess
the accuracy of the surrogatemodel. The surrogatemodel predictions
and the SOWFA results are only based on the same distributed yaw
angles and the same freestream inflow profile. The results of three
typical test cases are given in Fig. 13, where the mean freestream
wind speeds are 8, 9, and 10 m∕s, respectively. As shown, the
prediction errors are quite small in the whole domain for all the test
cases. To further examine the surrogate model’s performance, the
corresponding velocity profiles at various locations from X # −1D
to X # 14D are given in Fig. 14. As can be seen, the wake deficits
generated by the turbines at X # 0D, X # 5D, and X # 10D; the
wake development including deflection, recovery, and expansion
behind each turbine; and the wake interactions between turbines
are all successfully predicted. The predicted profiles at all the loca-
tionsmatch verywell with the corresponding high-fidelity simulation
results. Also, the average RMSE of the surrogate model predictions
compared to the SOWFA results for all 20 test cases is
1.60 × 10−1 m∕s, which is just 2% of the freestream wind speed;
and the online run time of the surrogate model is negligible (around

a) 8m/s, f = (16.5°, 4.69°, –22.9°)

b) 9m/s, f = (2.56°, 15.7°, 4.11°)

c) 10m/s, f = (–6.98°, –15.4°, –23.4°)
Fig. 14 The velocity profiles for the three-turbine cases by ICA-NN (dashed) and high-fidelity simulations (solid).
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9 × 10−4 s using one core) compared to the SOWFA, which requires
around 44 h using 256 cores for each case. Therefore, it is concluded
that the surrogate model predicts the wind farm flowfield efficiently
and accurately.
To further illustrate the scalability of the surrogate model, the

prediction of a wind farm with 5 × 5 wind turbines is carried out;
and the results are given in Fig. 15. The inflow velocity is set as 9 m∕s,
and the turbine yaw angles from left to right are set as [28.4, 13.3,
−7.63, −8.50, −28.1 deg] for the first row, [27.9, 8.50, 21.5, −29.4,
25.1 deg] for the second row, [19.5, 16.5, −26.5, −9.15, −10.8 deg]
for the third row, [−15.7, 6.54, −12.1, −14.6, −16.9 deg] for the
fourth row, and [16.7, −2.79, −27.9, 10.8, 26.9 deg] for the fifth row.
As can be seen, the wake interactions and the yaw effects are both
captured satisfactorily by the surrogate model. Because the so-
constructed surrogate model can achieve fast approximation of the
original high-fidelity LESmodel, it can be used directly for the control
design of large-scale wind farms.

IV. Conclusions
In this paper, a machine-learning-based surrogate modelingmethod

was proposed, where three-dimensionality reduction techniques (i.e.,
POD, ICA, and AE) were investigated for reducing the flowfield
dimension; and the neural network was used to predict the reduced
coefficients from the input parameters. The surrogate modeling
method was specifically designed to tackle distributed fluid systems
bycarryingout surrogatemodeling for each subdomain and combining
the flowfieldof each subdomainwith the consideration of thematching
condition at the interface. The applications to a diffusion-dominant
problem (more specifically, 1-D Poisson equation) and a convection-
dominant problem (more specifically, wind farm simulations) demon-
strated the efficiency, accuracy, and scalability of the proposed
surrogate modelingmethod. In particular, the surrogate model of wind
farmwakes predicted thewind farmvelocity field very accurately,with
an average root-mean-square error (compared to high-fidelity results)
being 2% of the freestream wind speed; whereas the online prediction
time is negligible (around 9 × 10−4 s using one core) compared to the
high-fidelity simulation, which requires around 44 h using 256 cores
for each case. This demonstrated the ability of the proposedmethod in
modeling large-scale distributed fluid systems.
Future research may involve the application of the proposed

surrogate modeling to other flow problems, such as the flowfield
around heater arrays in heat exchangers and the distributed roughness
elements in boundary-layer flow. The optimal design using the con-
structed surrogate model is also of great interest. For example, it can
be used for wind farm layout optimization or as an internal model for
wind farm yaw optimization. Another research direction is the sur-
rogate modeling of unsteady distributed systems and the optimal
control design based on such surrogate models.
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