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Reinforcement Learning-Based Structural Control of
Floating Wind Turbines
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Abstract—The structural control of floating wind turbines
using active tuned mass damper is investigated in this article.
To our knowledge, this is for the first time that reinforcement
learning-based control approach is employed to this type of appli-
cation. Specifically, an adaptive dynamic programming (ADP)
algorithm is used to derive the optimal control law based on
the nonlinear structural dynamics, and the large-scale machine
learning platform Tensorflow is employed for the design and
implementation of the neural network (NN) structure. Three
fully connected NNs, i.e., a plant network, a critic network,
and an action network, are included in the proposed NN struc-
ture. Their training requires the gradient information flowing
through the whole network, which is tackled by automatic dif-
ferentiation, a popular technique for deriving the gradients of
complex networks automatically. While to our knowledge, the
network structures in the existing literature are rather simple and
the training of the hidden layer is usually ignored. This allows
their gradients to be derived analytically, which is infeasible
with complex network structures. Thus, automatic differentia-
tion greatly improves the employed ADP algorithm’s ability in
solving complex problems. The simulation results of structural
control of floating wind turbines show that ADP controller per-
forms very well in both normal and extreme conditions, with
the standard deviation of the platform pitch displacement being
reduced by around 40%. A clear advantage of ADP controllers
over the H∞ controller is observed, especially in extreme condi-
tions. Moreover, our design considers the tradeoff between the
control performance and power consumption.

Index Terms—Active structural control, adaptive dynamic pro-
gramming (ADP), floating wind turbine, neural networks (NNs),
reinforcement learning.

I. INTRODUCTION

AS ONE of the most important clean energy resources,
wind energy has been investigating extensively all over

the world. Due to the installation limitations of the land-based
wind turbines and, on the other hand, the high quality of the
offshore wind, more and more large wind turbines are being
constructed offshore [1]. There are two types of offshore wind
turbines according to the foundations, the fix-bottom ones and
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the floating ones. The fix-bottom turbines are installed in shal-
low water sites while floating ones are in deep water sites away
from the coast, where the fix-bottom structures become eco-
nomically infeasible [1]. Thus, the modeling and control of
the floating wind turbines is becoming a hot topic [1], [2].

The fatigue loads on floating wind turbines are much more
severe than the fix-bottom ones, due to the platform motions
caused by the significant external disturbances (i.e., strong
wind and waves) [1]. Thus, their load mitigation is of great
importance for reducing maintenance costs and increasing
lifespan. One approach for load mitigation is to make use of
the rotor thrust as the restoring force to stabilize the float-
ing platform, which can be achieved through either turbine
blade pitch control [3] (including individual pitch control [4]
and collective pitch control [5], [6]) or torque control [7].
However, this approach may interfere with the nominal power
generation. Another approach is to install additional control
devices on the floating platform, such as tuned mass dampers
(TMDs) [8] and tuned liquid dampers (TLDs), to dampen the
platform/tower vibrations directly without interfering power
generation. In [9], passive TMDs were investigated for the
structural control of both monopile turbines and floating tur-
bines. Further study considered the use of multiple TMDs [10]
and different modeling approaches for monopile turbines [11]
and floating turbines [12]. As for TLDs, they were investi-
gated for the structural control of conventional turbines in [13].
Further studies investigated the modeling and optimal design
of TLDs [14], the semiactive control approach [15], and the
control of floating hydrostatic wind turbines [16].

The performance of a TMD can be further improved by
adding active force control to it, which is referred as hybrid
mass dampers (HMDs) [17]. The existing works on active
structural control of floating wind turbines by using HMDs
are rather limited. In [18], structural control of a floating
barge-type wind turbine was investigated, where an HMD was
positioned in the turbine nacelle to reduce the loads. A lim-
ited degree of freedom (DOF) model was constructed through
the system identification procedure, then the H∞ multivariable
loop shaping controller was designed. The paper [19] fur-
ther investigated the effects of both actuator dynamics and
control-structure interaction on the active control of float-
ing wind turbines. In [20], load mitigation of floating wind
turbines by an HMD installed on the platform was inves-
tigated. A linear design model was first identified, then a
generalized H∞ method was employed to optimize control
gains, which achieved good performance under normal wind
and wave conditions. However, this method was not able to
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work on extreme wind and wave conditions. In [21], a con-
tact nonlinear modeling method for barge-type floating wind
turbines was presented, where a stroke-limited HMD was
included. The HMD was installed in the turbine’s nacelle and
a state-feedback linear–quadratic regulator (LQR) controller
was proposed for the active structural control.

The control designs in the aforementioned works were
all based on linear models, whether they were formulated
based on physical principals or identified by synthetic data.
However, the motion of floating wind turbines in the off-
shore environment can be quite complex and the turbine
position can be quite far away from equilibrium, due to the
extreme wind/waves loads. Thus, a control strategy that can
take account of the nonlinear dynamics of floating wind tur-
bines is required. In the present article, for the first time,
we apply reinforcement learning-based control approach for
the load alleviation of floating wind turbines. Specifically, an
adaptive dynamic programming (ADP) algorithm is employed,
which can take account of the nonlinear dynamics of the struc-
tural system in the control design process, thus the designed
controller can achieve optimal performance in both normal and
extreme conditions.

ADP is a powerful tool for optimal control prob-
lems. Originally proposed by Werbos [22], [23], ADP has
caught extensive attention recently on the optimal con-
trol of both continuous-time (CT) and discrete-time (DT)
systems [24]–[31]. It is specifically designed and developed
to tackle the control of complex nonlinear systems. Typical
examples include coal gasification [32], energy management
systems [33], hypersonic vehicle tracking [34], microgrid
system [35], and optimal tracking [36]. However, to the best
of our knowledge, its application in structural control of float-
ing turbines has not yet been explored. There are mainly two
types of iterative ADP algorithms: 1) value iteration approxi-
mate dynamic programming (VI-ADP) and 2) policy iteration
approximate dynamic programming (PI-ADP) [37]–[39]. For
VI-ADP approaches, the iteration begins with an initial value
function and then the policy improvement is carried out
according to the iterative value function. This approach does
not require an initial admissible control law. However, the ini-
tialization of the value function needs to be designed in order
to guarantee the stability and convergence of the iteration
process. The paper [40] proposed a VI-ADP approach with
a value function initialization technique, where the conver-
gence property was also proved. In [41] a generalized VI-ADP
algorithm was proposed, which only requires an arbitrary pos-
itive semidefinite function to initialize the value function in
order to guarantee the convergence property of the algorithm.
On the other hand, for the PI-ADP approaches, an admissi-
ble initial control law is required for the iteration process.
In [42], a DT PI-ADP algorithm was proposed for nonlin-
ear systems with convergence and stability analysis, and an
effective method to obtain the initial admissible control law
was given. A generalized PI-ADP approach was proposed
in [43], which relaxed the requirement of obtaining the initial
admissible policy [28].

In our work, the PI-ADP approach for DT systems [28] is
employed for the structural control of floating wind turbines.

Because the considered open-loop system (the floating wind
turbine with passive TMD) is stable, there exists a natural
admissible control policy (i.e., active control force set to
be 0). It will be used for the initialization of the PI-ADP
approach that can ensure the stability of the closed-loop
system [28], [42]. The employed algorithm includes three
networks, i.e., an action network, a critic network, and a plant
network. The training of the plant network and critic network
is carried out in supervised manner while the training of the
action network aims to minimize the critic network output,
which requires the gradient information flowing through all
the three networks. The network structures in the existing lit-
erature are usually very simple where only weight vectors
outside the neural network (NN) activations were included in
the NN structure or the weight matrix in the hidden layer were
included but not used for training, which undermined the abil-
ity of NNs in approximating the plant’s complex nonlinear
behavior in practical applications. This allows the gradients
being derived analytically, but it is infeasible to do so for
complex network structures. In this work, the automatic dif-
ferentiation is employed to calculate the gradients in all the
NN training, including the training of the hidden layer and
this method is independent of specific applications, which
greatly extends the PI-ADP algorithm’s ability in solving
complex practical problems and simplifies its implementation.
The large-scale machine learning platform Tensorflow [44]
is used for the implementation of the proposed NN struc-
ture. Its highly parallel computing environment makes our NN
implementation even more powerful, especially with the use
of GPU.

The National Renewable Energy Laboratory (NREL) 5-MW
baseline ITI energy barge wind turbine model [1] is used in
this study. An HMD is installed on the platform and designed
to suppress the vibration in the fore-aft direction. We men-
tion that the side-to-side vibration of the platform can be well
tackled by passive TMDs. The NREL Flow Analysis Software
Toolkit (FAST) code [2] is employed to simulate the structural
system, and the plant network is trained based on the data gen-
erated by FAST. After training the plant network, a series of
ADP controllers are obtained by varying the penalty term in
the action–critic network training, which considers the tradeoff
between the control performance and power consumption.

The remainder of this article is organized as follows: the
structural control of floating wind turbines is formulated in
Section II. The PI-ADP algorithm and its implementation with
the proposed NN structure are described in Section III, where
the training of the plant network, the critic network, and the
action network is presented in detail. The structural control
design based on PI-ADP is described in Section IV. The con-
trol performance is evaluated in Section V, where a set of
wind/wave conditions are considered. Finally, the conclusions
are drawn in Section VI.

II. PROBLEM FORMULATION

The structural control of a floating wind turbine is described
in this section. Here, the turbine’s structural dynamics with
HMD and the control objective are given.

Authorized licensed use limited to: University of Warwick. Downloaded on March 28,2024 at 14:43:39 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: REINFORCEMENT LEARNING-BASED STRUCTURAL CONTROL OF FLOATING WIND TURBINES 1605

Fig. 1. Schematic illustration of the floating wind turbine model within FAST [45] coupled with an HMD.

A. Floating Turbine System With HMD

The structural control of an NREL 5-MW floating wind
turbine model within FAST code [1] is investigated here.
An HMD is coupled to the floating platform of this model,
which moves in the fore-aft direction to suppress the struc-
tural vibration of the floating turbine in this direction (see
Fig. 1). A stroke limit of ±17 m is imposed for the HMD
since the length of the platform is 40 m. The damping coef-
ficient, stiffness coefficient, and mass of the HMD are set as
60 393 N/(m/s), 103 019 N/m, and 400 000 kg, respectively,
which are the optimal values used in [20]. All the DOFs
are enabled except the nacelle yaw DOF as the yaw con-
trol is not considered in this article. Among all the DOFs,
the main structural dynamics of this turbine-HMD system
can be characterized by the platform pitch angle, the tower-
top displacement, and the HMD displacement. Therefore, the
structural system can be approximated by a discrete system F

xk+1 = F(xk, uk), k = 0, 1, 2, . . . (1)

where k is the discrete time step, u is the control variable
(i.e., the active HMD force), and x is the state variable which
is defined as

x = [
xhmd, uhmd, xplfm, uplfm, xtt, utt

]
. (2)

Here, xhmd, uhmd, xplfm, uplfm, xtt, and utt represent the HMD
displacement, HMD velocity, platform pitch angle, platform
pitch angular velocity, tower top displacement, and tower-top
velocity, respectively.

B. Control Objective

The active structural control aims at reducing the vibrations
of the turbine’s platform and tower in the fore-aft direction
with a minimum amount of power consumption. Denote the
sequence of active HMD forces as ūk = {uk, uk+1, uk+2, . . .},

then the cost function for the state x0 under the control ū0 is
defined as

J(x0, ū0) =
∞∑

k=0

U(xk, uk) (3)

where the utility function U(xk, uk) is defined as

U(xk, uk) = (xk)
T · Au · (xk)+ Bu · (uk)

2 (4)

where · represents the dot product, the superscript T represents
the matrix transpose, and the empirical parameters Au and Bu

are used to investigate the tradeoff between the active control
force and the control performance. Equation (4) allows the
utility function U(xk, uk) to be positive definite [28], [42] and
to take account of the costs from both the structural vibrations
(which is described by the first term) and the active power
consumption (which is described by the second term).

Here, we focus on state-feedback control, thus an arbitrary
control law can be expressed as

uk = μ(xk). (5)

The cost function for the state x0 under the control law μ can
then be expressed as

Jμ(x0) =
∞∑

k=0

U(xk, μ(xk)). (6)

The structural control objective is to find an optimal control
policy μ∗(xk) such that

μ∗(xk) = arg min
uk

{
U(xk, uk)+ J∗(F(xk, uk))

}
(7)

where

J∗(xk) = min
uk

{
U(xk, uk)+ J∗(F(xk, uk))

}
. (8)
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Fig. 2. Whole NN structure, including the plant network, the action network and the critic network.

III. PI-ADP ALGORITHM AND ITS IMPLEMENTATION

The PI-ADP algorithm begins with an admissible control
law μ0 and then obtains the optimal cost function and the
optimal control law iteratively through the policy evaluation
and policy improvement procedure. During policy evaluation,
the value function Vi is constructed based on the corresponding
control law μi such that it satisfies the following equation:

Vi(xk) = U(xk, μi(xk))+ Vi(F(xk, μi(xk))). (9)

Then, during the policy improvement, the control law μi+1 is
updated based on the value function Vi according to

μi+1(xk) = arg min
uk

{U(xk, uk)+ Vi(F(xk, uk))}. (10)

Through the iteration process (μ0 → V0 → μ1 → V1 →
μ2 → · · ·VN−1 → μN), the optimal cost function J∗ is
approximated by VN and the optimal control law μ∗ is approx-
imated by μN . The properties of the PI-ADP algorithm have
been proved in [28] and [42], where an admissible initial con-
trol law is required to guarantee the convergence and stability
of the algorithm. The main focus of this article is a novel NN
realization of the employed PI-ADP algorithm and its appli-
cation on structural control of floating wind turbine (which
is also applicable to other complex industrial systems). The
interested reader may refer to [28] and [42] for the detailed
proof of stability. The proposed NN structure and its training
details are described in the following sections.

A. Neural Network Structure

The whole NN structure proposed in this work is illustrated
in Fig. 2. The plant network, the action network, and the critic
network in Fig. 2 are all simple NNs with one-hidden layer
as illustrated in Fig. 3. Here, we have designed the network
in order to feed standardized data for all the NN trainings.
We employ the standard scaler (denoted as Scaler 1, Scaler 2,
Scaler 3, and Scaler 4 in Fig. 2), which normalizes the data
by their mean value and standard deviation (SD)

dstd = d− m(d)

s(d)
(11)

Fig. 3. Illustration of an artificial NN with one hidden layer. x is the
N1-dimension input variable, h is the N2-dimension hidden layer output, and
y is the N3-dimension output variable. w1, b1, w2, and b2 are the weight
matrix of the NN and σ is the activation function.

where m(d) and s(d) represent the mean and SD of the
dataset d. The utility function is redefined in terms of the
standardized state and action variables as

U
(

xstd
k , ustd

k

)
=

(
xstd

k

)T · A∗u ·
(

xstd
k

)
+ B∗u ·

(
ustd

k

)2
(12)

so that the costs arising from structural vibration and the power
consumption are comparable. The forward and inverse map-
pings of Scalers 1–4 are denoted as S 1–S 4 and S−1

1 –S−1
4 ,

respectively. The forward mappings of the plant network, the
action network, and the critic network are denoted as P ,
A , and C , respectively. The plant network is designed to
approximate the structural system such that

xk+1 = xk +S−1
3 ◦P (S 1(xk),S 2(uk)) (13)

where ◦ represents the composition of functions. The plant
network is designed to predict the state change instead of
the state variable because this way can greatly increase the
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prediction accuracy—the state change is usually subtle com-
pared to the state variable. The action network is designed to
approximate the structural controller such that

uk = S−1
2 ◦A ◦S 1(xk). (14)

The critic network is designed to approximate the value
function such that

V(xk) = C ◦S 4(xk). (15)

Thus, with this NN structure, (9) is approximated by

C i ◦S 4(xk) = U(S 1(xk),A i ◦S 1(xk))+ C i ◦S 4

×
(

xk +S−1
3 ◦P (S 1(xk),A i ◦S 1(xk))

)

(16)

and (10) is approximated by

A i+1 ◦S 1(xk)

= arg min
A ◦S 1(xk)

{
U(S 1(xk),A ◦S 1(xk))+ C i ◦S 4

×
(

xk +S−1
3 ◦P (S 1(xk),A ◦S 1(xk))

)}
.

(17)

B. Neural Network Training

The training of the proposed NN structure is detailed here
and the overall training process is summarized in Algorithm 1.

Equation (13) can be reformulated as

S 3(xk+1 − xk) =P (S 1(xk),S 2(uk)) (18)

thus the plant network is trained by minimizing the mean-
squared error (MSE) loss

lp = MSE(S 3(xk+1 − xk),P (S 1(xk),S 2(uk))). (19)

The critic network training can be done in two different
approaches. In the first approach, the critic network is trained
such that (9) is satisfied. In the second approach, the value
function is approximated directly by

V(xk) =
N∑

j=0

U
(

xstd
k+j, ustd

k+j

)
(20)

where N is a large number. In this work, we employ the second
approach, as it converges faster than the first one. Thus, the
critic network is trained by minimizing

lc = MSE

⎛

⎝
N∑

j=0

U
(
S 1

(
xk+j

)
,A ◦S 1

(
xk+j

))
,C ◦S 4(xk)

⎞

⎠

(21)

where xk+j is obtained by evaluating the plant network
iteratively.

According to (17), the action network is trained by mini-
mizing

la = MSE
(

0, U(S 1(xk),A ◦S 1(xk))+ C ◦S 4

×
(

xk +S−1
3 ◦P (S 1(xk),A ◦S 1(xk))

))
.

(22)

Algorithm 1 Training of the Proposed NN Structure
1: Load the training data {x∗k }, {u∗k} and {x∗k+1}, and prepro-

cess them to obtain {xstd∗
k }, {ustd∗

k } and {dxstd∗
k }.

2: Set the hidden layer neuron number N2; Set the learning
rate lr.

3: Train the plant network by feeding {xstd∗
k }, {ustd∗

k } and
{dxstd∗

k } into xstd
k , ustd

k , and dxstd
k .

4: Set the maximum iteration number Niter.
5: Initialize i = 1; Set the convergence criterion ε.
6: Initialize the action network such that the initial control

law is admissible.
7: while i < Niter + 1 do
8: Compute the {Vi(x∗k+1)} according to (20) by feeding
{x∗k+1} into xk.

9: Train the critic network by feeding {x∗k+1} and
{Vi(x∗k+1)} into xk+1 and V(xk+1).

10: Train the action network by feeding {x∗k } into xk.
11: if i > 1 then:
12: Compute econv: the MSE between {Vi−1(xk)} and
{Vi(xk)}.

13: if econv < ε then:
14: The whole process is convergent.
15: Break.
16: end if
17: end if
18: i← i+ 1
19: end while

The critic network and the action network are trained itera-
tively until the whole process converges which is described in
detail in Algorithm 1. All the NN trainings are carried out with
the Adam optimization algorithm [46]. Automatic differenti-
ation [47], which calculates the gradients of complex graphs
automatically based on the chain rule, is employed here for
deriving ∂lp/∂wp (∂lc/∂wc or ∂la/∂wa) for the plant (critic or
action) network training, where wp (wc or wa) represents the
weight matrix in the plant (critic or action) network.

The relationship between the three subnetworks is further
explained here. The plant network is trained alone in a super-
vised manner, as only P is involved in (19). The critic
network is also trained alone in a supervised manner as only
forward evaluation of A and P is needed in deriving ∂lc/∂wc

in (21). The training of the action network, however, requires
the gradient information flowing through the whole network,
as P , C , and A are all involved in deriving ∂la/∂wa in (22).

IV. HMD CONTROLLER DESIGN OF FLOATING

WIND TURBINE

In this section, the design of a machine learning-based HMD
controller for a floating wind turbine is investigated, using the
NN structure and training algorithm proposed in the previous
section.

A. Plant Network Training

The plant network is trained by using the data gener-
ated by the floating wind turbine simulation model shown
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in Fig. 1. The training dataset is a set of training samples
with each sample consisting of the state variable at the cur-
rent time step, the action variable at the current time step
and the state variable at the next time step. The time step
is set as 0.06 s, which is also the time step of the trained
plant network. To generate the training dataset, 100 random
initial conditions for [xhmd, xplfm, xtt] in the parameter space
[−15, 15] m × [−15, 15] deg × [−3, 3] m are at first obtained
by the Latin hypercube sampling method, then a 15-s simula-
tion with a time step of 0.01 s is carried out for each initial
condition, under the excitation of random HMD force with a
time step of 0.1 s and within the interval [− 5000, 5000] kN.
Next, the first 5-s time series is eliminated and the data sample
is extracted with a time interval of 0.1 s. All the data samples
are collected together to form the final training dataset.

After generating the training dataset, a plant network with
the hidden-layer neuron number N2 = 20 is constructed. The
learning rate is set as 0.001 and the training error is set as
10−3. The plant network is then trained to mimic the structural
system. In order to assess the accuracy of the trained network,
a comparison of the FAST simulation results and the plant
network calculations is given in Fig. 4, with the test HMD
force time series shown in Fig. 4(a) and the comparison of
the structural response under this HMD force excitation shown
in Fig. 4(b)–(g). Both calculations are based on the same initial
condition at t = 5 s, and the test HMD force time series shown
in Fig. 4(a) has not been used during training. Fig. 4(b)–(g)
shows a perfect match between the FAST simulation and the
plant network calculation for the whole simulation period. This
demonstrates that the plant network has captured the nonlinear
dynamics of the structural system.

B. Action–Critic Network Training

The action–critic network training is conducted iteratively
according to Algorithm 1. The hidden-layer neuron number
of both networks is set as 20 and the learning rate is set as
0.001. The bias term is not used for the action network, impos-
ing the condition μ(0) = 0. The training error of the critic
network is set as 10−3 and the training of action network is
deemed completed when the training loss la drops less than
a prescribed threshold with further training, which is set as
10−5 here. The action network is initialized by very small
random weights as μ0 = 0 is an admissible control law for
the structural system. N in (20) is set as 5000. A∗u in the utility
function is set as 10−4 × diag{(1, 1, 25, 25, 1, 1)} and a num-
ber of values are chosen for B∗u, which are reported in Table I.
Each chosen B∗u results in a different action network after the
training process. These trained action networks are the state-
feedback controllers that will be used for the structural control
in the next section (denoted as ADP1–ADP8 hereafter). The
final converged training results are reported in the Appendix.

All the NN trainings are carried out with one NVIDIA Tesla
K80 GPU card to take advantage of Tensorflow’s efficiency
with GPU backend. For all the eight (ADP1–ADP8) con-
troller designs, on average, the plant network training requires
about 88 s, the critic network training requires about 33 s,
and the action network training requires about 245 s. The

action network training takes much longer than other NNs
as it requires the gradient information flowing through the
whole network (all three subnetworks are involved). The same
training process is also tested out with 4 INTEL Xeon CPUs
(2.40 GHz) and it is more than three times slower than train-
ing with GPU. This clearly demonstrates the advantage of the
current implementation on Tensorflow with GPU backend.

V. SIMULATION STUDY

With the converged plant network capturing the dynamics of
the structural system and the converged action network approx-
imating the optimal control law, which are developed above,
this section is devoted to simulation tests.

A. Wind and Wave Conditions

The turbulent wind is generated based on the IEC Kaimai
spectral model with NTM in TurbSim [48], and the wave
condition is generated by the HydroDyn module in FAST
based on the JONSWAP spectrum. Two extreme events and
two normal events are considered at first to analyze the con-
trol performance. Then, a range of wind/wave conditions
are included to further demonstrate the effectiveness of the
ADP controllers. For the two extreme events (event E1 and
event E2), which were recorded in the report [1], the main
hub-height longitudinal wind speeds are, respectively, 22 and
24 m/s, the turbulence intensity is category B, and the peak-
spectral periods of the incident waves are 13.4 and 15.5 s with
the significant wave heights of 4.7 and 5.5 m, respectively.
For the two normal events (event N1 and event N2), the main
hub-height longitudinal wind speeds are, respectively, 9 and
18 m/s, the turbulence intensity is category A, and the peak-
spectral periods of the incident waves are 12 and 11 s with the
significant wave heights of 2 and 4.5 m, respectively. For the
remaining cases (ranging from normal to extreme conditions),
the wind speed increases from 9 to 24 m/s with an interval of
3 m/s, and B level turbulence intensity is used for all the cases.
The corresponding significant wave heights increase linearly
from 2 to 5.5 m and peak-spectral periods increase linearly
from 12 to 15.5 s.

B. Performance Evaluation and Discussion

The simulation results are given here, including the calcula-
tions with no TMD, passive TMD, HMD using H∞ controller,
and HMD using a series of ADP controllers (ADP1–ADP8).

The SD of the platform pitch angle and the corresponding
HMD power consumption for the two normal events (N1 and
N2) and the two extreme events (E1 and E2) are given in
Table I. Fig. 5 shows the corresponding time responses. First,
the performances of the ADP8 controller and the H∞ con-
troller are compared because their active power consumption
are similar. In the two normal events, the SDs of the plat-
form pitch displacement are reduced by 12.34% and 11.69%
using the controller ADP8, compared with the passive case,
while they are reduced by 10.83% and 9.64% using the H∞
controller. It is concluded that the ADP controller and the
H∞ controller perform similarly in normal events. However,
in the two extreme events, as can be seen from Fig. 5(c)
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Fig. 4. Comparison of the FAST simulation results (solid line) and the plant network calculations (dashed line). (a) Test HMD force. (b) HMD displacement.
(c) HMD velocity. (d) Platform pitch angle. (e) Platform pitch angular velocity. (f) Tower top displacement. (g) Tower top velocity.

and (d), the platform pitch displacement with the controller
ADP8 is much smaller than the ones with the H∞ con-
troller. Compared with the passive case, the SDs of the pitch

displacement are reduced by 14.64% and 10.15% using the
controller ADP8 while they are reduced by 8.72% and 2.67%
using the H∞ controller. In conclusion, a clear advantage of
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TABLE I
RESULTS FOR THE TWO NORMAL EVENTS AND THE TWO EXTREME EVENTS, INCLUDING THE SIMULATION WITH NO TMD, PASSIVE TMD, HMD
USING H∞ CONTROLLER, AND HMD USING A SERIES OF ADP CONTROLLERS. THE SD OF THE PLATFORM PITCH ANGLE (IN DEGREE) AND THE

CORRESPONDING HMD POWER(IN KW) ARE REPORTED

Fig. 5. Simulation results, including the ones with no TMD, passive TMD, HMD using H∞ controller, HMD using ADP1 controller, and HMD using ADP8
controller, for the normal event (a) N1 and (b) N2, and the extreme event (c) E1 and (d) E2. Among ADP controllers, ADP1 controller is the most effective
one in terms of vibration suppression and the ADP8 controller uses similar amount of HMD power as the H∞ controller.

the ADP controller over H∞ controller is observed in the
extreme events but the ADP controller performs only slightly
better in the normal events. This observation is reasonable

because the H∞ controller is expected to perform well in the
linear range of the dynamic systems and the ADP controller
shows its advantages in strongly nonlinear situations.
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TABLE II
RESULTS FOR A RANGE OF WIND/WAVE CONDITIONS (WIND SPEED FROM 9 m/s TO 24 m/s), INCLUDING THE SIMULATION WITH NO TMD, PASSIVE

TMD, HMD USING H∞ CONTROLLER, AND HMD USING A SERIES OF ADP CONTROLLERS. THE SD OF THE PLATFORM PITCH ANGLE (IN DEGREE)
AND THE CORRESPONDING HMD POWER (IN KW) ARE REPORTED. THE 24 m/s CASE IS EXACTLY THE SAME AS E2 IN TABLE I THUS, OMITTED HERE

Fig. 6. Reduction of the SDs of the platform pitch displacements against
the HMD power, for the events E1, E2, N1, and N2. The symbols in each
line (from left to right) represent the results obtained by ADP8, ADP7, . . . ,
ADP1.

The simulation results of ADP1, the controller with the most
effective vibration suppression performance, are also given
in Fig. 5, with the SDs of the platform pitch displacement
reduced by 38.53% and 35.56% in the events N1 and N2, and
by 41.01% and 40.43% in the events E1 and E2. In addition,
the HMD power consumptions are 719.25 and 863.59 kW in
E1 and E2 and 236.73 and 657.62 kW in N1 and N2. In [20],
an average reduction of 18.1% for the platform pitch root-
mean square by the generalized H∞ controller was reported
with an average power consumption of 684 kW. In addition,
they stated that their generalized H∞ controller was not able to
work under the extreme wind and wave conditions. The results
here clearly demonstrate the great advantage of the machine
learning-based approach over the H∞ control approach in the
structural control of floating wind turbines.

By changing the penalty coefficient B∗u related to the HMD
force magnitude in the utility function, a set of controllers
have been obtained which consider the tradeoff between the
control performance and power consumption. Fig. 6 shows
the reduction of the SDs of the platform pitch displacements
against the power consumptions for the events N1, N2, E1, and
E2. It shows that ADP1 is the suitable choice if the ability
of the wind turbines to withstand extreme conditions is the
primary concern, while ADP5 may be more suitable if the
HMD power consumption becomes more concerned.

To further evaluate the ADP controllers’ performance, the
simulations ranging from normal conditions to extreme condi-
tions (from 9 to 24 m/s with an interval of 3 m/s) are carried
out and the results are given in Table II. As can be seen, the
proposed ADP controllers perform very well for all the cases.

VI. CONCLUSION

The machine learning-based structural control of floating
wind turbines has been investigated. An HMD was installed on
the floating platform in order to reduce the platform vibration,
and the ADP approach was employed to obtain the optimal
control law. The design of the NN structure and its implemen-
tation on the modern large-scale machine learning platform
Tensorflow was proposed. Three networks were included in
the whole NN structure, including a plant network, a critic
network, and an action network. After training, the approx-
imate optimal controller was obtained, based on the plant
network that captured the nonlinear dynamics of the struc-
tural system. The simulation results showed that the ADP
controller performed extremely well in both normal condi-
tions and extreme conditions. A clear advantage of the ADP
controllers over the H∞ controller was observed, especially
for extreme conditions—the scenarios that must be considered
seriously in offshore wind technology.

In addition, our algorithm allows to consider the tradeoff
between the control performance and the power consumption.
A series of ADP controllers were obtained by varying the
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penalty term in the network training. As expected, the control
performance increased with the increase of power consump-
tion. We mention that in practice, the passive TMD is expected
to work alone most of the time and the active part only works
when the vibration is above a certain limit.

APPENDIX

TRAINING RESULTS

The final ADP controllers used in this article are given here.
The ADP state-feedback control can be expressed as

u = su

[
w2σ

(
w1

x
sx

)]
(23)

where su, the SD of the action variable in the training dataset,
is 2.882487× 106 and sx, the SD of the state variable in the
training dataset, is [7.614702, 4.324959, 3.804557, 1.873835,
0.815144, 1.931296]. σ represents the hyperbolic tangent
function. The weight matrix w1 and w2 for ADP1–ADP8 can
be found in the supporting materials of this article.
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