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H I G H L I G H T S

• A novel dynamic wind farm wake model is developed based on deep learning.

• This model can predict unsteady flow features while running as fast as static model.

• A ROM method for unsteady distributed fluid systems is proposed to build the model.

• A high-fidelity CFD database for wind farm is generated for model training.
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A B S T R A C T

A deep learning based reduced order modelling method for general unsteady fluid systems is proposed, which is
then applied to develop a novel dynamic wind farm wake model. The proposed method employs the proper
orthogonal decomposition technique for reducing the flow field dimension and the long short-term memory
network for predicting the reduced representation of the flow field at a future time step. The method is speci-
fically designed to tackle distributed fluid systems (such as wind farm wakes) and to be control-oriented. For
wind farm wake modelling, a set of large eddy simulations are first carried out to generate a series of flow field
data for wind turbines operating in different conditions. Then the proposed method is employed to develop the
data-based wake model. The results show that this novel dynamic wind farm wake model can predict the main
features of unsteady wind turbine wakes similarly as high-fidelity wake models while running as fast as the low-
fidelity static wake models and that the model’s overall prediction error is just 4.8% with respect to the free-
stream wind speed. As an illustrative example, the developed model can predict the unsteady turbine wakes of a
9-turbine test wind farm within several seconds based on a standard desktop while it requires tens of thousands
of CPU hours on a high-performance computing cluster if a high-fidelity model is used. Thus the developed
model can be used for fast yet accurate simulation of wind farms as well as for their predictions and control
designs.

1. Introduction

Wind turbines are usually grouped to form a wind farm in order to
reduce the overall cost of wind power harvesting. However, the
downstream turbines’ performance can be significantly undermined if
they operate in the wakes generated by the upstream turbines. The
turbine rotor wakes are characterized by reduced wind speed and an
increased turbulence level, thus the turbines operating in the wakes
usually generate less power and experience more severe structural loads
than the ones operating in freestream wind. For example, the experi-
mental investigation [1] showed that the downstream turbine’s power
loss due to the wake effects could be up to 46% compared to the power
generation in the designed wind condition. In order to mitigate the
wake effects, turbine layout is usually optimized during the design

phase while various control techniques are proposed for the operation
phase to steer the wake away from the downstream turbines, which
include turbine yaw control, individual pitch control, and tilt-based
control [2]. However, the design and evaluation of wind farm con-
trollers are very challenging due to the lack of an accurate yet fast and
efficient turbine wake model to take account of the wake dynamics.
Thus such model is urgently needed for the optimal control design of
wind farms. Besides, it can also be used for monitoring wind farms and
predicting their extreme and fatigue load and electricity generations,
through fast simulation.

Extensive research efforts have been spent on wind farm wake
modelling. There exist various wake models in the literature [3], in-
cluding low-fidelity, medium-fidelity and high-fidelity models. The
most widely used wake models are the analytical low-fidelity models,
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such as the Jensen Park model [4,5], the Frandsen model [6], the
FLORIS model [7], the 3D wake model [8,9], and the models developed
in [10,11]. These models are formulated analytically and are very fast
to evaluate, which makes them suitable for wind farm layout optimi-
zation. The further development of analytical models is still an active
area, such as taking into account the turbulence effect [12,13], mod-
elling yaw effects [14–16], modelling background flow effects [17],
considering the expansion of physical wake boundary [18], and in-
corporating uncertainty based on high-fidelity data [19]. However, as
these models are static, they are mainly used in turbine layout design
for optimizing static quantities, such as mean power generation. In
order to achieve wind farm design with consideration of unsteady
quantities such as power fluctuation and structural load, a dynamic
model that can capture the unsteady wakes is needed. More im-
portantly, as static models are not suitable for the control design of
wind farms, a fast, efficient, and accurate dynamic model is of great
interest to the wind farm control community.

Currently, most investigations of unsteady wakes are carried out
using numerical simulations, such as the studies of the Lillgrund wind
farm in [20] and the Horns Rev offshore wind farm in [21]. For nu-
merical simulations, turbine rotors were usually modelled by the ac-
tuator disk method (ADM) [22,23] or the actuator line method (ALM)
[24,25]. The comparisons of the ADM and ALM methods in wind farm
simulations were also investigated, by using the PALM model [26], the
UTDWF model [27], and the model developed in [28]. The further
development of wind farm solvers is still an active area, such as the
Nalu-Wind solver in [29]. Although these high-fidelity models can
capture detailed wake dynamics, such as wake recovery and wake
meandering, they are expensive to run. For instance, in [7] about 60 h
of distributed computation with 512 processors on high-performance
computing (HPC) clusters were used for 1000s large eddy simulation
(LES) of a 3 km × 3 km wind farm with 6 turbines. The requirement of
long simulation time and enormous computing resources makes high-
fidelity models not suitable for control design purposes. In the existing
literature, there are also a few medium-fidelity dynamic models, such as
the dynamic wake meandering (DWM) in [30], WFSim in [31], and the
continuous-time dynamic wake model in [32]. The development of
such control-oriented dynamic wake models is becoming very active
now. In this work, contrary to [30–32] which are based on assumption
and approximation from physical observation, we develop a machine
learning based reduced order modelling (ROM) method to build a novel
wake model that can be evaluated as fast as low-fidelity static models
while capturing the unsteady wake details similarly as high-fidelity
models. With the fast development of machine learning, in particular
deep learning [33], this work paves the way for developing novel wake
models using advanced machine learning techniques based on high-fi-
delity flow field data.

Recently non-intrusive ROM using machine learning is attracting
more and more research attention in fluid dynamics [34], including the
investigations of both steady [35] and unsteady flow problems [36,37].
One approach is to directly formulate the ROM as a supervised machine
learning problem to train a model with the flow parameters as training
input and the full flow field as training output [38,39]. This kind of
approach makes use of the-state-of-art machine learning algorithms,
which can thus mimic the fluid system to high accuracy if there are
enough training data available. Another approach is to first reduce the
flow field dimension by a dimensionality reduction technique, and then
formulate a supervised machine learning problem to predict the re-
duced coefficients instead of the full flow field, with the flow para-
meters as input. Such studies include the ROM of both steady [40,41]
and unsteady [42,43] flow problems. In this way, the trained model can
capture the main dynamics of the fluid systems while alleviating the
need for a large amount of high-fidelity training data.

A ROM method for unsteady distributed fluid systems is proposed in
this work. Distributed fluid systems are quite common in daily life and
industrial applications, such as the natural convection of heater array in

heat exchangers [44,45], the heat transfer of building array in turbulent
boundary layer [46], and the wake interactions of wind turbines within
a wind farm [20,21]. In the proposed ROM method, the high-dimen-
sional flow field data is first reduced to low-dimensional coefficients by
a dimensionality reduction technique called proper orthogonal de-
composition (POD) [47]. Then a deep recurrent neural network (RNN),
called long-short term memory (LSTM) [33,48], is employed to predict
the reduced coefficients at current time step based on the reduced
coefficients in the previous time steps. POD is chosen as it can capture
the main flow features according to the flow field’s energy content
while LSTM is chosen as it is very powerful in handling time-series
predictions. The proposed method can be used for the ROM of general
unsteady fluid systems but is not directly suitable for distributed fluid
systems. The present paper handles this challenge by including the flow
boundary conditions in the model input to enable the constructed re-
duced order model to predict the flow field around distributed struc-
tures of different layouts/scales. The proposed method is hereby re-
ferred as POD-LSTM.

The application of the POD-LSTM method to wind farm wake
modelling is then investigated. A series of large eddy simulations are
carried out with wind turbine rotors operating in different yaw condi-
tions under different turbulent inflows. Then the machine learning
model is trained to learn the wake dynamics from the generated LES
database. The results show that the so-constructed reduced order dy-
namic wake model can be evaluated as fast as low-fidelity static models
while capturing the main unsteady flow features (such as the stream-
wise convection of flow structures, the wake meandering, the turbine’s
yaw effects, and the wake interactions between wind turbines) similarly
as high-fidelity dynamic models. Therefore, this data-based model can
be used for fast wind farm simulations, predictions and control design.

The main contributions of this paper are summarized as follows:

(i) A novel data-based dynamic wind farm wake model is developed
and validated through a series of simulation tests including single
turbine wakes, multiple turbine wakes, yawed wakes, and wake
interactions within a large wind farm. As the existing wake models
in the literature are either unable to predict unsteady wake details
(low-fidelity models) or too time-consuming to run (high-fidelity
models), this work bridges the research gap by developing a wake
model that can predict unsteady wind turbine wakes similarly as
high-fidelity wake models while running as fast as the low-fidelity
static wake models. The comparison of the developed model with
existing wake models is summarised in Table 1.

(ii) A deep learning based ROM method, called POD-LSTM, is pro-
posed to build this novel wake model. As the existing ROM
methods in the literature are not suitable for distributed systems,
this work fills the research gap by proposing a ROM method spe-
cifically designed for distributed systems. The proposed method is
generic and can also be used to model other distributed fluid sys-
tems, such as tidal farms and building arrays in the atmospheric
boundary layer.

(iii) A high-fidelity CFD database of wind flow around turbine rotors is

Table 1
The comparison of the developed machine learning based wake model with
existing wake models.

Type Analytical Numerical Machine learning

Models Jensen, Frandsen,
FLORIS, 3D wake, …

PALM, UTDWF,
Nalu-Wind,
SOWFA, …

The model
developed in this
paper

Based on flow observations NS equations LES database
Method flow analysis CFD deep learning
Speed fast slow fast
Accuracy low high moderate/high
Flow details no yes yes
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generated, through a series of large eddy simulations which takes
around ×7 105 CPU hours’ run time on local HPC clusters. The
above deep learning based dynamic wind farm wake model is then
trained to learn the complex wind farm wake dynamics from this
valuable database.

The remaining part of this paper is organized as follows: the pro-
posed deep learning based ROM method is described in Section 2. Its
application on wind farm wake modelling is described in Section 3.
After developing the wake model, the model validation and prediction
are carried out in Section 4, where the prediction results on wakes
behind a turbine with changing yaw and wake interactions in a 9-tur-
bine wind farm are demonstrated. Finally, the conclusions are drawn in
Section 5. The main terminologies mentioned in this paper are pre-
sented in Table 2.

2. Methodology

An example distributed fluid system, a wind farm, is illustrated in
Fig. 1, where M distributed structures (wind turbines in this example)
with distributed control parameters …d d d[ , , , ]M1 2 (such as the yaw

angle and blade pitch angle for a wind turbine) are shown in the rec-
tangular flow domain. With a CFD approach, a mesh is first generated
for the whole flow domain and then the discretized governing equation
(such as the Navier–Stokes equations) is solved on the mesh. This ap-
proach is usually costly as the degree of freedom (the number of cells) is
very high. In this section, a machine learning based ROM approach is
developed to build a reduced order model that can predict the flow field
efficiently given the distributed control parameters (wind turbines’
operating parameters [ …d d d, , , M1 2 ] in this example).

A ROM approach is to generate a set of flow field data using CFD,
followed by training a model that takes all the distributed control
parameters as the input to predict the whole flow field as the output.
There are two fundamental flaws in this approach: i) after training, the
model can only predict the flow field of a fixed layout and scale. ii) it is
not feasible to generate the training data for the prediction of a fluid
system containing many distributed structures, due to the curse of di-
mensionality (a large number of CFD simulations are required to cover
the input parameter space which includes all the distributed control
parameters).

These challenges are addressed in the proposed ROM approach
here. The main idea is to first divide the whole fluid domain into

Table 2
The main terminologies (including abbreviations, parameters and variables) mentioned in this paper.

List of terminologies (abbreviations)
ADM Actuator disk method NREL National Renewable Energy Laboratory
ALM Actuator line method NS Navier–Stokes
CFD Computational fluid dynamics POD Proper orthogonal decomposition
DWM Dynamic wake meandering RMSE Root-mean-squared-errors
FSTI Freestream turbulence intensity RNN Recurrent neural network
HPC High-performance computing ROM Reduced order modelling
LES Large eddy simulation SCRTP Scientific Computing Research Technology Platform
LSTM Long-short term memory SOWFA Simulator fOr Wind Farm Applications
MSE Mean-squared error SVD Singular value decomposition

List of terminologies (parameters and variables)
d The dimension of the spatial domain ui

0 The inflow velocity at ith time step
di The ith distributed control parameter ui

r The reduced coefficient at ith time step
D The matrix of designed input variables U The matrix of flow snapshots
M The number of distributed structures U The matrix of all the flow fields
Nh The LSTM cell’s output feature dimension rU The reduced representation of all the flow fields
Nt The number of time steps in LES simulations PODU The flow fields estimated by exact POD coefficients
Nx The number of points in each subdomain ̂U The flow field predicted by POD-LSTM

P The dimension of each distributed parameter vk The kth POD basis
R The number of POD basis X The spatial coordinates of all the grid points
S The number of simulations in the LES database α The dropout rate of the LSTM cell
T The number of lookback time steps αk The kth POD coefficient
Ttot The number of prediction steps ∊POD The POD model reduction error

̃u The true value of a flow snapshot ∊total The total prediction error
̂u The approximate value of a flow snapshot

Fig. 1. A typical example of a distributed fluid system, where a subdomain containing one distributed structure is illustrated by the dashed rectangular.
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individual subdomains (as shown by the dashed rectangular in Fig. 1),
then carry out the ROM for each subdomain with only one single dis-
tributed control parameter included as model input, and finally obtain
the whole flow field prediction by combining all the subdomain pre-
dictions. One missing ingredient is how to take account of the inter-
actions between subdomains, which depends on whether the problem
at hand is convection-dominant or diffusion-dominant. Here, the con-
vection-dominant fluid problems are of our interest, which are omni-
present in industrial applications and natural phenomena. For this kind
of problem, the impact of downstream structures on upstream flow can
be ignored. Thus the upstream flow information can be directly used to
impose the inflow condition for the downstream subdomain. The ROM
for the whole domain can thus be carried out for each subdomain se-
quentially from upstream to downstream. The proposed ROM proce-
dure includes four steps as shown below.

2.1. Design of experiments

This step serves to generate/collect high-fidelity training data. For a
system with M distibuted structures as in Fig. 1, a set of design input

variables, denoted asD , are generated according to a sampling strategy
(such as Latin hypercube sampling), where D is a matrix of shape
[M N P, ,t ] with m i p, ,tD representing the design value of the pth control
parameter of the mth distributed structure at time step it. Nt is the total
number of time steps and P is the dimension of each distributed control
parameter (for example, =P 2 for the wind turbine case if two control
parameters, e.g., turbine yaw angle and turbine blade pitch angle, are
considered). The corresponding output variables, the flow field dataU ,
are obtained by running CFD or wind tunnel experiment with the de-
signed input D . Here U is a matrix of shape [M N N, ,t x] with m i i, ,t xU

representing the value of the flow velocity magnitude in the mth sub-
domain at spatial coordinate indexed by ix at time step it . Nx is the total
number of grid points in each subdomain. A matrix X of shape [N d,x ]
is used to record the location of all the grid points within a subdomain
relative to the corresponding distributed structure location, where

i d,1:xX represents the d-dimension spatial coordinate (for example =d 2
for 2-D plane) indexed by ix.

In order to expand the training dataset to include more scenarios, a
set of CFD/experiments can be carried out with different inflow con-
ditions and design input variables. All the resulting data can then be

Fig. 2. An illustration of the data pipeline of the proposed POD-LSTM method.
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collected and reshaped together as the final training dataset. If in total S
simulations/experiments are carried out, the final design input matrix
D is of shape [ ×M S N P, ,t ] and the design output matrixU containing
all the flow field data is of shape [ ×M S N N, ,t x].

2.2. Dimensionality reduction

Here, the design output matrix U obtained in previous step is first
reshaped into a matrix U of shape [ × ×M S N N,t x], with each row in U
representing a snapshot of the flow field. The POD as in [47] is done by
the singular value decomposition (SVD) as

=U V WΣ ,T T (1)

where the kth column vector of V, denoted as vk, is the kth POD basis.
Setting the total number of POD basis as R, each snapshot of the flow
field, ̃u , can then be approximated by

̂ ∑=
=

u α v ,
k

R

k k
1 (2)

where the reduced coefficients αk are calculated by

̃= < > ⩽ ⩽α u v k R, , 1 .k k (3)

In this way, the output matrix U can be reduced into its reduced re-
presentation rU of shape [ ×M S N R, ,t ], where m i r

r
, ,tU represents the rth

reduced coefficient of the flow field m i N, ,1:t xU . This dimensionality re-
duction process thus reduces the original flow field dimension from Nx
to R. We mention that other dimensionality reduction techniques can
also be used in the proposed ROM framework. The independent com-
ponent analysis [49] and the auto-encoder [50] have been implemented
and tested for the applications in this work, and the results are omitted
here as their performances are not as good as POD.

2.3. Neural network training

After dimensionality reduction, a supervised machine learning
problem is formulated to predict the reduced coefficients at the current
time step based on historical data of the flow. The LSTM network,
which is particularly powerful in time-series predictions, is employed
here.

The overall data pipeline is illustrated in Fig. 2, where the flow field,
the inflow velocity, and the distributed control parameters from time
steps 1 to T are required as the input in order to predict the flow field at
time step +T 1. The flow fields from 1 to T are first reduced to their
POD coefficients, which are then fed into the LSTM network along with
the inflow and distributed control parameter history to predict the POD
coefficients at time step +T 1. Finally the flow field at time step +T 1 is
reconstructed based on the predicted POD coefficients according to Eq.
(2). The LSTM network in Fig. 2 is detailed in Fig. 3 which shows that
the POD coefficients, the inflow velocity, and the distributed control
parameters’ value are standardized by the standard scalers before being
fed into the LSTM cells. The scalers (denoted as Scaler1 and Scaler2
respectively in Fig. 3)) standardize the input features (the POD coeffi-
cients and the rest features respectively) by removing their mean and
scaling to unit variance. A dense layer is stacked on top of the LSTM
cells to predict the standardized POD coefficients at the next time step,
which is then scaled back to obtain the POD coefficient predictions.

For the model training, a data generator is implemented which
extracts the training input and corresponding training target by mini-
batches from the database D andU , and then feeds them to the LSTM
network. The LSTM network is trained to minimize the mean-squared
error (MSE) between the network output and the training target. The
Adam optimization algorithm [51] is used with a learning rate of 0.001
for all neural network training in this paper. The model is implemented
based on the machine learning package Keras [52] with Tensorflow
backend [53].

After training, the POD-LSTM model can predict the flow field at
time step +T 1 (i.e. ̂ +uT 1), given the history of the flow field data (i.e.

̃ ̃ ̃…u u u[ , , ]T1 2 ), inflow velocity (i.e. …u u u[ , , ]T1
0

2
0 0 ), and the distributed

control parameters’ value (i.e. …d d d[ , , ]T1 2 ). For the prediction of the
flow field at time step +T 2 (i.e. ̂ +uT 2), the predicted flow field at time
step +T 1 (i.e. ̂ +uT 1), the user-defined inflow velocity at time step +T 1
(i.e. +uT 1

0 ), and the user-defined distributed control parameter’s value at
time step +T 1 (i.e. +dT 1) along with the history data (i.e.,

̃ ̃… … …u u u u d d[ , ], [ , ], [ , ]T T T2 2
0 0

2 ) are fed into the data pipeline. In this
way, all future flow fields can be predicted iteratively.

2.4. Prediction of the whole flow field

The POD-LSTM model developed above can predict the flow field in
a single subdomain at all future time steps given the history of the flow
field and the future inflow velocity and distributed control parameters’
value. For the prediction of the whole flow field, the trained POD-LSTM
model is used to predict the flow field in each subdomain sequentially
from upstream to downstream, and then the whole flow field is ob-
tained by combining all the subdomains’ predictions. The detailed
procedure can be found in the Appendix.

3. Development of the novel dynamic wind farm wake model

The POD-LSTM method developed above is employed to build a
novel dynamic wake model in this section.

3.1. High-fidelity data generation

The high-fidelity flow field data is generated using SOWFA
(Simulator fOr Wind Farm Applications) [54], an LES solver for wind
farm wakes developed at the National Renewable Energy Laboratory
(NREL). It has been validated in previous studies [55,25]. The turbine
rotors are modelled as actuator lines in this work. For the mesh gen-
eration, as recommended by [2], a mesh size of × ×12 m 12 m 12 m is
used in the far field and a two-level mesh refinement is applied around
the turbines such that the mesh size around turbine rotors is

× ×3 m 3 m 3 m. The simulation domain considered in this work is the
same as the one recommended by [2], which is illustrated in Fig. 4. A
typical instantaneous flow field visualization is also shown. The cor-
responding hub-height horizontal plane is extracted and shown in
Fig. 5, where the two-level mesh refinement is illustrated. The total
number of cells is about ×1.8 107. For turbine wake simulations, a
precursor simulation of the atmospheric boundary layer is first carried
out to obtain the initial flow field and the inflow boundary condition,

Fig. 3. The detailed illustration of the LSTM network in Fig. 2.
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and then three NREL 5-MW wind turbines with the baseline turbine
pitch and torque control [56] are added in the simulation domain with
a downstream spacing of 5 rotor diameters. For each simulated case,
1110s simulations are carried out with a time step of 0.02 s.

Three inflow conditions with average wind speeds of 8 m/s, 9 m/s,
and 10 m/s and freestream turbulence intensity (FSTI) of 6%, are con-
sidered. Twenty simulations are carried out for each inflow condition,
with different yaw angles for each simulation case. The yaw angles are

Fig. 4. The illustration of the 3D simulation domain. A typical instantaneous vorticity contour coloured by velocity magnitude is shown. The hub-height horizontal
plane is also shown.

Fig. 5. A top view of the simulation domain at turbine hub height. The contour shows the instantaneous flow velocity magnitude.
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designed by random initial yaw and random yaw changes of less than °3
every second during the whole simulation period. The yaw angles are
limited to the range − ° °[ 30 , 30 ]. By these settings, the generated LES
data covers a wider flow speed range and turbine yaw range. An ex-
ample of the designed yaw angles in a simulation case is shown in
Fig. 6. After CFD simulations, the flow fields at turbine hub-height are
sampled every second to extract the training data. The first 400 s si-
mulation results are discarded as the turbine wakes have not been well
established during this period. Therefore, 710 snapshots of the flow
field are recorded for each case. Then the flow field in each subdomain
containing one turbine (as shown in Fig. 5) is extracted and inter-
polated into a uniform grid of ×50 30. All the generated flow field data
is collected together to form the training dataset U . The shape of the
final training matrixU is [180, 710, 1500], with s i, ,1:1500tU representing a
snapshot of the flow field in one subdomain at time step it for the
scenario indexed by s. All the designed yaw angles are collected as the
design input matrix D of shape [180, 1110, 1], where s i, ,1tD represents
the yaw angle at time step it for the scenario indexed by s. Here a
scenario designates the unsteady flow fields in one subdomain of one
simulation case. The whole data generation process takes around

×7 105 CPU hours where each simulation requires around 46 h’ com-
putation on a local cluster with 256 CPUs.

3.2. Model training

The generated LES data contains 180 flow scenarios with each
scenario consisting of the unsteady flow fields at 710 discrete time in-
stants. For model training purpose, the whole dataset is divided into a
training dataset (the first 64% time instants), a validation dataset (the
64%~85% time instants), and a test dataset (the last 15% time instants).
The training dataset is fed into the POD-LSTM network by mini-batches
with a batch size of 1024 while the validation dataset is used to eval-
uate the model after each training epoch. The test dataset is not used in
the training process but only for model testing after training.

Dropout, including the input dropout and the recurrent dropout, is
an efficient technique to tackle overfitting. The LSTM network with and
without the input and recurrent dropout are both tested. It turns out
that the one with dropout performs much better, thus it is used in this
paper. The stack of multiple LSTM layers does not further increase the
model performance thus only one LSTM layer, as illustrated in Fig. 3, is
included in the POD-LSTM model. There are still a few hyper-para-
meters undetermined in the POD-LSTM network, i.e., the total lookback
time step of the flow history, the number of POD basis, and the output
features’ dimension of the LSTM cell. The validation errors are used to
determine these hyper-parameters’ empirical values, by a grid-search
procedure. The final hyper-parameters’ values are given in Table 3,
along with the evaluations of the POD-LSTM model’s performance by

using the test dataset. The POD model reduction error is defined as the
mean value of the root-mean-squared-errors (RMSEs) between the re-
constructed flow fields from the exact POD coefficients and the exact
flow fields:

∑ ∑∊ =
×

= =

RMSE1
180 102

( , ),POD
s i

s i s i
POD

1

180

609

710

, ,1:1500 , ,1:1500
t

t tU U
(4)

where

∑= < >
=

v v, .s i
POD

k

R

s i k k, ,1:1500
1

, ,1:1500t tU U
(5)

And the POD-LSTM model prediction error is defined as the mean value
of the RMSEs between the flow fields predicted by the POD-LSTM
model and the exact flow fields:

̂∑ ∑∊ =
×

= =

RMSE1
180 102

( , ).total
s i

s i s i
1

180

609

710

, ,1:1500 , ,1:1500
t

t tU U
(6)

where ̂s i, ,1:1500tU represents the POD-LSTM predictions. As shown in
Table 3, the POD-LSTM prediction error arises from both the re-
presentation of the flow field by the reduced coefficients, which is
characterized by ∊POD, and the difference of the exact POD coefficients
and the ones predicted by the LSTM network, which is characterized by
∊ − ∊total POD. The overall prediction error is 0.428 m/s, which is just 4.8%
with respect to the freestream wind speed.

After training, the POD-LSTM model can be used for the prediction
of the flow field of the next second given the flow history in the past five
seconds. This prediction process can be carried out iteratively so that all
the future flow fields can be predicted with a time step of 1 s.

4. Results and discussions

The flow field predictions, including both the single-turbine wake
and multiple-turbine wake predictions, are carried out using the above
developed dynamic wake model. The results are compared with the
high-fidelity SOWFA simulation results for model validation. After that,

Fig. 6. An example of the designed yaw angles in a simulation case. The yaw angles of all the three turbines are included.

Table 3
The hyper-parameters in the POD-LSTM model and the model evaluation. T
represents the total lookback time step of the flow history in order to predict the
current flow field, R represents the number of the POD basis, Nh represents the
output features’ dimension of the LSTM cell, and α represents the dropout rate
of both input dropout and recurrent dropout. The model reduction error ∊POD

(m/s) and the total prediction error ∊total (m/s) are for the model evaluation.

T R Nh α ∊POD ∊total

5 350 350 0.2 0.328 0.428
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two simulation case studies are carried out to demonstrate the model’s
ability in capturing the yaw effect on turbine wakes and in simulating
large-scale wind farms.

4.1. Model validations

4.1.1. Single-turbine wake predictions
The single-turbine wake predictions are carried out and compared

with the test dataset. The POD-LSTM model is used to predict both the
flow field in one time step directly and the flow fields in all future time
steps iteratively. To predict the flow fields from time step T to +T Ttot,
the calculation by the POD-LSTM model uses the same initial flow fields
as SOWFA only from time step −T 5 to −T 1, the same inflow condi-
tions as SOWFA from time step T to +T Ttot, and the same yaw angles as
SOWFA from time step T to +T Ttot.

The predictions are carried out for all the cases in the test dataset.
Two typical cases are chosen to demonstrate the model’s performance,
including one with the turbine operating in freestream condition and
the other with the turbine operating in the front turbine’s wake. The
results are shown in Figs. 7 and 8, including the SOWFA predictions, the
flow field reconstructions from exact POD coefficients and the POD-
LSTM model predictions, at time step +T T, 10 and +T 20.

As can be seen, the reconstructions from exact POD coefficients
match with SOWFA results quite well for all time steps in both cases,
which illustrates that the chosen POD basis captures the main flow

dynamics very well thus this dimensionality reduction process can be
combined with the subsequent machine learning model for the accurate
flow field predictions, as in [40,42]. The direct and iterative flow field
predictions at time step +T T, 10 and +T 20 by the POD-LSTM model
match with the POD reconstruction results very well in both cases,
which demonstrates that the LSTM network can predict the POD coef-
ficients accurately. The overall prediction error is small and satisfac-
tory, considering the chaotic nature of the turbulent wakes and limited
information used for these predictions.

4.1.2. Multiple-turbine wake predictions
The multiple-turbine wake predictions are carried out in this sub-

section to demonstrate the POD-LSTM model’s ability in capturing wake
interactions. The case of two turbines in a row with a downstream
spacing of 5 rotor diameters is considered. The POD-LSTM model is
used to predict the flow field in one time step directly and the flow
fields in all future time steps iteratively. To predict the flow fields from
time step T to +T Ttot, the calculation by the POD-LSTM model uses the
same initial flow fields as SOWFA only from time step −T 5 to −T 1,
the same freestream conditions (that is, the inflow conditions for the
front turbine) as SOWFA from time step T to +T Ttot , and the same yaw
angles as SOWFA for all the turbines from time step T to +T Ttot .

The predictions are carried out for all the flow conditions in the test
dataset. An example case is chosen to demonstrate the model’s perfor-
mance in capturing the wake interactions. The results are shown in

(a) Time step: T

(b) Time step: T + 10

(c) Time step: T + 20

Fig. 7. An example case of the single-turbine wake prediction with the turbine operating in freestream condition. The results include the SOWFA predictions, the flow
field reconstructions from exact POD coefficients, and the POD-LSTM model predictions at time step a( ) T b, ( ) +T 10, and c( ) +T 20. The turbine rotor is located at
(0, 0) m of the 2D plane.
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Fig. 9, including the SOWFA predictions and the POD-LSTM model
predictions at time step +T T, 10, and +T 20. As can be seen, the di-
rect and iterative flow field predictions at time step +T T, 10 and

+T 20 by the POD-LSTM model match with SOWFA simulation results
quite well for both the front turbine’s and the rear turbine’s wake,
which demonstrates that the proposed model can to predict the wake
interactions accurately. It is worth noting that the impact of the up-
stream turbine on the downstream turbine is well captured in all the
prediction time steps, which is essential in guaranteeing the perfor-
mance of the developed model in large-scale wind farm predictions.

4.2. Model predictions - two case studies

4.2.1. The yaw effect on turbine wakes
A single turbine case with designed yaw change is investigated

using the developed model to demonstrate its ability in capturing the
yaw effect on turbine wakes. The single-turbine wake is predicted for a
simulation time of 300 s, with the yaw angle being − °20 for the first
100 s, then increasing linearly from − °20 to °20 in the next s100 , and
staying at °20 for the last s100 . The snapshots at 100 s and 300 s are
shown in Fig. 10. As can be seen, the impact of turbine yaw on unsteady
turbine wakes are captured, where the wake deflection is predicted
correctly.

The video showing the unsteady flow field visualization can be
found in the supporting materials of this paper (see Video1). As can be

seen from the video, the main feature of the unsteady turbine wake,
such as the streamwise convection of flow structures, the wake’s
crosswind meandering, and the wake’s deflection with changing yaw
are captured clearly by the developed model during the whole simu-
lation duration. This further validates the developed model’s ability in
capturing main flow features for long time simulations. To our knowl-
edge, there are no existing wake models that can achieve fast predic-
tions of these unsteady flow features. We also mention that the suc-
cessful prediction of the streamwise convection and crosswind
meandering of flow structures is not trivial, as the LSTM network is not
trained to predict the velocity at specific locations but the POD coef-
ficients which do not directly reflect the spatial convection of the flow.
The POD only serves as the dimensionality reduction technique and the
POD basis does not characterize the coherent structures as in [57],
because the flow field snapshots in the training dataset are collected
from different simulations under random flow parameters. In addition,
this case also demonstrates the generalization performance of the de-
veloped model, as the model has not encountered the designed yaw
patterns (constant yaw and linear yaw change) during training.

4.2.2. A 9-turbine test case
The simulation of a ×3 3 wind turbine array is carried out to il-

lustrate the use of the developed model for the fast simulations of large-
scale wind farm wakes. The freestream condition with the average wind
speed of 9 m/s and FSTI of 6% is used. The turbine yaw angles are kept

Fig. 8. An example case of the single-turbine wake prediction with the turbine operating in the front turbine’s wake. The results include the SOWFA predictions, the
flow field reconstructions from exact POD coefficients, and the POD-LSTM model predictions at time step a( ) T b, ( ) +T 10, and c( ) +T 20. The turbine rotor is located
at (0, 0) m of the 2D plane.
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constant for the simulation time of s300 , with the front turbine yaw
angle being ° ° − °20 , 0 , 20 respectively and the yaw angles of the rest
turbines being °0 . The snapshots at 180 s, 190 s, and 200 s are shown in
Fig. 11. As can be seen, both the front turbines’ wake deflections and
the wake interactions between turbines are predicted correctly. How-
ever, as can be seen, there are discontinuities in the predicted flow
fields at the interface between different rows of wind turbines. This is
because the current model only considers the interactions between
subdomains through the upstream boundary, which is enough in cap-
turing the main wake interactions. This discontinuity issue can be
solved by including all the boundary conditions of each subdomain as
the input in the POD-LSTM model.

The unsteady flow field visualization can be found in the supporting
materials of this paper (see Video2). As can be seen from the video, the
POD-LSTM model predictions show similar flow characteristics seen in
the LES of wind farms, such as the wake meandering and the stream-
wise convection of flow structures. The simulations by the POD-LSTM
model require negligible computational time (several seconds) on a
standard desktop, while LES of such system requires tens of thousands
of CPU hours on an HPC cluster. This 9-turbine test case demonstrates
the full potential of the developed model in the fast yet accurate si-
mulation, prediction and control design of utility-scale wind farms.

5. Conclusions

In this work, a deep learning based ROM method for distributed
unsteady fluid systems was proposed, which was then applied to build a
novel data-based dynamic wind farm wake model. A valuable high-fi-
delity LES database was first generated, which took around ×7 105 CPU

hours using high-performance computing clusters. Based on the gen-
erated LES database, the deep learning based dynamic wake model was
trained to capture the complex wind farm wake dynamics. The results
showed that the developed wake model was able to capture the main
unsteady flow features (such as the streamwise convection of flow
structures, the wake meandering, the wake’s deflection with changing
yaw, and the wake interactions between wind turbines) similarly as
high-fidelity wake models while running as fast as the low-fidelity static
wake models. The model’s performance was validated against high-fi-
delity LES results and the overall prediction error is just 4.8% with re-
spect to the freestream wind speed. After validating the developed wake
model, two test cases were carried out, and the results demonstrated
that the model was able to capture the yaw effect on turbine wakes and
was able to achieve fast simulations of large-scale wind farms. In par-
ticular, the results of the 9-turbine test case showed that the developed
model was able to predict the unsteady turbine wakes in several sec-
onds on a standard desktop while it requires tens of thousands of CPU
hours on a high-performance computing cluster if a high-fidelity model
is used. As the existing wake models in the literature are either too
time-consuming or unable to capture detailed wake dynamics, the de-
veloped model brings a step change in fast and accurate simulations,
predictions, and control designs of wind farms. This work also paves the
way for developing novel wake models using advanced machine
learning techniques. The proposed ROM methods can also be applied to
other distributed fluid systems to build reduced order models based on
which optimal designs can be achieved with much less computation
cost than based on high-fidelity models.

Future work may include applying this novel wind farm wake model
in wake control in order to reduce wind turbine load, maximize the

(a) Time step: T

(b) Time step: T + 10

(c) Time step: T + 20

Fig. 9. An example case of the multiple-turbine wake predictions with two turbines in a row. The results include the SOWFA predictions and the POD-LSTM model
predictions at time step a( ) T b, ( ) +T 10, and c( ) +T 20. The front and the rear turbine rotors are located at (0, 0) m and (632, 0) m of the 2D plane respectively.
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wind power harvesting, and support the electricity grid. This can be
done by either using the developed model as an internal model in the
control design or using it as a fast simulation model to design and test
control strategies. As the developed model is fast to evaluate and can
capture the yaw effect and wake interactions, it can be used for ex-
ploring new wake (or wake interaction) patterns used for some yaw
control strategies. Another possible research direction is to incorporate
the 3D wake dynamics in the machine learning models.
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Appendix A. Prediction of the whole flow field

The detailed procedure for predicting the flow field around multiple wind turbines is summarised below as Algorithm 1.

Algorithm 1. The prediction of the whole flow field

1: Divide the whole flow domain into M subdomains (as illustrated in Fig. 1) and number them from upstream to downstream as … M[1, 2, , ].

Fig. 10. The snapshots of the flow field around a single turbine predicted by the
POD-LSTM model with designed yaw change, at time steps a( ) 100 s and b( )
300 s. The turbine rotor is located at (0, 0) m of the 2D plane.

Fig. 11. The snapshots of the flow field around a ×3 3 wind turbine array
predicted by the POD-LSTM model, at time steps a( ) b180 s, ( ) 190 s, and c( )
200 s. The 9 turbines are located at the grid points of

×[0, 632, 1264] [0, 379.2, 758.4] m of the 2D plane.
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2: Initialize the flow field history in all subdomains: ̃ ̃ ̃… ⩽ ⩽u u u i M{[ , , ], 1 }i i T i1, 2, , .

3: Initialize the inflow velocity history in all subdomains: … ⩽ ⩽u u u i M{[ , , ], 1 }i i T i1,
0

2,
0

,
0 .

4: Initialize the distributed control parameters’ history in all subdomains: … ⩽ ⩽d d d i M{[ , , ], 1 }i i T i1, 2, , .
5: Set total prediction step Ttot .
6: ←k 1.
7: while ⩽k Ttot do
8: for i in … M[1, 2, , ] do
9: Propagate the input ̃ ̃ ̃… … …+ + − + + − + + −u u u u u u d d d[ , , ], [ , , ], [ , , ]k i k i T k i k i k i T k i k i k i T k i, 1, 1, ,

0
1,

0
1,

0 , 1, 1, through the data pipeline shown in Fig. 2 to obtain the flow field in the ith

subdomain at time step ̃+ +T k u: T k i, .
10: end for
11: Obtain the inflow velocity at time step + ⩽ ⩽+T k u i M: , 1T k i,

0 , by setting it directly from the user-defined boundary condition for the most upstream subdomains, while for

the downstream subdomains, extracting the inflow velocity from the neighbouring upstream subdomains’ flow field predictions.
12: Set the distributed control parameters’ value at time step +T k from user-defined values: ⩽ ⩽+d i M, 1T k i, .
13: Output the whole flow field at time step +T k by combining ̃ ̃ ̃…+ + +u u u, , ,T k T k T k M,1 ,2 , together.
14: ← +k k 1
15: end while
16: The unsteady flow fields for the whole domain from time +T 1 to +T Ttot are obtained.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.apenergy.2020.115552.
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