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a b s t r a c t 

In this work, an efficient approach for quantifying the parameter uncertainty for expensive computer 

models is proposed, which combines the high dimensional model representation (HDMR) technique and 

the Gaussian process machine learning (GPML) method to construct the surrogate model, then the so- 

constructed surrogate is used in the Bayesian inference procedure to obtain the posterior distribution 

of the model parameters. The applications of the proposed approach to simple mathematical functions 

are investigated, demonstrating its efficiency and accuracy for both continuous function and function 

with discontinuities. The computer design of the sampling points based on GPML is also proposed and 

the results show that the proposed method is promising in terms of both efficiency and extensibility 

to high dimensional problems. After testing the proposed approach with simple mathematical functions, 

it is applied to the two equation SST turbulence model for hypersonic flow over flat plate with a wide 

range of Mach numbers. A Bayesian scenario-averaging method based on the flow quantities that can 

characterize both the flow scenario and the model’s performance in the scenario is proposed and it is 

employed for the model predictions of new flow scenarios. The results show that the prediction mean 

values match well with the DNS data and the corresponding uncertainties are well captured. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Computer models have been widely used for numerically sim-

lating complex physical systems, such as in the areas of weather

orecasting, climate simulation, and aircraft design. In order to

ake reliable predictions of these complex systems, not only the

uantities of interest (QoI) but also the underlying uncertainties

hould be quantified rigorously. The empirical parameters of

he computer models are a major source of uncertainties and a

umber of studies have focused on quantifying the uncertainties

hrough the model parameters [1–6] . Often, due to the inherent

omplexity of the physical systems, the corresponding computer

odels can be quite complex, rendering the intrusive uncertainty

uantification (UQ) approach intractable. And for practical prob-

ems in engineering applications, the computer models can also be

ery expensive to evaluate, making the direct Monte-Carlo method

omputationally prohibitive. Thus a non-intrusive, efficient UQ

ethod is needed to capture the uncertainty of the QoIs while

eeping the cost low. 

An efficient Bayesian UQ approach is recently proposed in

ef [7] , which combines the adaptive high dimensional model rep-
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esentation technique (HDMR) [8] and stochastic collocation (SC)

ethod based generalized polynomial chaos (gPC) [9] to construct

he surrogate for sampling procedure in calibration step of the

ayesian UQ framework [10] . Specifically, the adaptive HDMR tech-

ique is used to decompose the original high dimensional prob-

ems into several lower-dimensional subproblems, which are sub-

equently solved with the gPC-based SC method. This approach

s applied to both a simple mathematical function and a com-

lex fluid dynamic model, i.e. k − ω − γ transition model [11] ,

emonstrating both its efficiency and accuracy. However, as the

urrogate modeling for the subproblems is based on global poly-

omials, the so-constructed surrogate suffers from the problems

f oscillations, especially when the response surface has local dis-

ontinuities. Moreover, even with the use of the Smolyak algo-

ithm [12] for sparse grid design, the resulting design nodal set

s by no means optimal. Thus a more efficient surrogate modeling

ethod needs to be employed, which should also capture the re-

ponse surface well even in the presence of discontinuities. 

In order to resolve successfully discontinuities in the random

pace, Ma&Zabaras [13] proposed an adaptive hierarchical sparse

rid collocation(ASGC) algorithm, in which they employed piece-

ise multi-linear hierarchical basis functions for surrogate mod-

ling and hierarchical surplus is used as an error indicator to

utomatically detect the discontinuities. In Ref [14] , Witteveen

https://doi.org/10.1016/j.compfluid.2019.01.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
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Fig. 1. The surrogates for the 1D step function, constructed by the GPML method and gPC-based SC method. Here the final size of the training set is 17 for GPML and 33 for 

gPC-based SC method. 

Fig. 2. The standard mean squared errors (SMSE) between the surrogate and the 

exact model (1D step function), against the size of the training set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The posterior distribution of the model parameter z of the 1D step function, 

using the exact model, the GPML surrogate and the gPC-based SC surrogate. 
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et al. proposed the Simplex-stochastic collocation(SSC) method,

suppressing the possible unphysical oscillations by imposing the

so-called Local-Extremum Conserving Limiter to each simplice.

Edeling et al. [15] improved the original SSC method by propos-

ing an alternative interpolation stencil technique based on the Set-

Covering problem. In Ref [16] , it is demonstrated that Gaussian

process machine learning (GPML) approach can be used to suc-

cessfully construct the surrogate for the response surface with dis-

continuities. In the literature, Gaussian process has already been

used as a powerful tool for surrogate construction in the context

of UQ, including [10,17–19] among many others. Moreover, the

GPML approach provides a consistent way for the efficient design

of the sample points. The main idea is that, with GPML method

we can obtain not only the posterior mean but also the posterior

variance of the output as a function of the input random variables,

and the posterior variance can be used as an indicator of the error

between the constructed GP model and the true response surface,
hich provides a consistent way for the design of the new sam-

ling point. 

The aim of this paper is to efficiently construct the surrogate, ir-

espective of whether the response surface is smooth or discontin-

ous. Then the so-constructed surrogate is used for sampling pro-

edure in Bayesian UQ. To do so, we combine the adaptive HDMR

echnique [8] with GPML method [16] , to construct the surrogate

odel. Then this surrogate model is used for both the forward

ropagation and the inverse problem. The proposed approach can

e seen as an improved version of the UQ approach proposed in

ef [7] , by replacing the gPC-based SC method with GPML method.

The application of the proposed approach to hypersonic turbu-

ent flow simulations is of primary interest to the present authors.

s is pointed out in Ref [20] , turbulence modeling remains a

ajor source of uncertainty in the computational prediction of

erodynamic forces and heating for hypersonic turbulent flows,

hus the uncertainty originating from turbulence models for this
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Fig. 4. The surrogates for the 1D smooth function, constructed by the GPML method and gPC-based SC method. Here the final size of the training set is 18 for GPML and 33 

for gPC-based SC method. 

Table 1 

The prior range for model parameters and the hyper-parameter σ h . 

Coefficient Nominal value Left boundary Right boundary 

a 1 0.31 0.2604 0.434 

κ 0.41 0.246 0.574 

β∗ 0.09 0.054 0.126 

σk 1 0.85 0.51 1.19 

σω 1 0.5 0.3 0.7 

β1 0.075 0.045 0.105 

σk 2 1.0 0.6 1.4 

σω 2 0.856 0.5136 1.1984 

β2 0.0828 0.04 96 8 0.11592 

σ h 
∗ 0 0.5 
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Fig. 5. The standard mean squared errors (SMSE) between the surrogate and the 

exact model (1D smooth function), against the size of the training set. 
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ow configuration should be quantified in order to make reliable

redictions. Moreover, with the increase of the Mach number,

he compressibility effects may further undermine the turbulence

odel’s ability for accurate predictions of QoIs. Although there are

everal compressibility corrections existing in the literature, most

idely-used turbulence models do not include them [21] . In this

aper, the two-equation SST model of Menter [22] is used for

he computational predictions of the surface drag for hypersonic

urbulent flows, and the uncertainty is accounted for through the

odel parameters. The model inadequacy is also a major source of

ncertainty in turbulence modeling, and it has raised the research

nterests in the field recently, e.g. [23–27] . In this work we model

he inadequacy term simply by a multiplicative Gaussian and focus

n the parameter uncertainties. 

In this work, the flows over a wide range of Mach numbers are

nvestigated, with the use of the DNS database recently reported

n Ref [28] . When making predictions for a new flow scenario,

 Bayesian scenario-averaging procedure is necessary in order to

ake account of all the information of the calibration results. Smart

cenario-averaging methods have been proposed in the literature,

.g. Ref [29] . In this work, a physics-based method to determine

he scenario weights is proposed, which is based on the mean

quared value of the difference of certain quantities between sce-

arios. The choice of the quantities to characterize each scenario

epends on the problems at hand and the computer models that

re used in the simulations. Specifically, the quantities that can

haracterize the flow field and also the model’s performance in dif-

erent scenarios should be chosen, as these quantities can reveal
he variability of the posterior distributions of model parameters

cross scenarios. 

The paper is organized as follows: the previously proposed

ayesian UQ approach is described in Section 2 . In Section 3 the

urrogate model construction approach based on GPML is de-

cribed. In Section 4 we demonstrate the accuracy and efficiency of

he proposed method through simple mathematical functions, in-

luding both smooth functions and functions with discontinuities.

 comparison between the proposed approach and the baseline

pproach is given. After testing our approach with these simple

athematical functions, we apply the approach to two equation

ST turbulence model in hypersonic turbulence simulations over a

ide range of Mach numbers in Section 5 . In Section 6 the model

redictions with quantified uncertainties are carried out and the

ayesian scenario-averaging method based on the flow quantities

hat can characterize both the flow field and the model’s per-

ormance in the scenario (e.g. turbulence Mach number in our



176 J. Zhang and S. Fu / Computers and Fluids 181 (2019) 173–187 

Fig. 6. The surrogate for the 2D step function, constructed by the GPML method and gPC-based SC method. Here the final size of the training set is 23 for GPML and 705 

for gPC-based SC method. The training samples are also shown. 

Table 2 

Flow conditions and the DNS data from Ref. [28] . 

Case Mach number Reynolds number ( m 

−1 ) Boundary layer thickness δ99( mm ) Skin friction coefficient 

1 3 5.55 × 10 6 8.85 2 . 17 × 10 −3 

2 4 7.4 × 10 6 12.0 1 . 61 × 10 −3 

3 5 9.25 × 10 6 15.1 1 . 31 × 10 −3 

4 6 1.11 × 10 7 19.7 1 . 08 × 10 −3 

5 7 1.30 × 10 7 28.1 8 . 51 × 10 −4 

6 8 1.48 × 10 7 31.8 7 . 80 × 10 −4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The standard mean squared errors (SMSE) between the surrogate and the 

exact model (2D step function), against the size of the training set. 
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application) is employed for the prediction of scenarios with no

experimental data. Finally the conclusion is drawn in Section 7 . 

2. Baseline uncertainty quantification approach 

In this section, the previously proposed Bayesian UQ approach

is briefly described. The interested reader may refer to [7] for fur-

ther details. 

2.1. Bayesian uncertainty quantification framework 

In the Bayesian framework, various forms of uncertainty,

whether aleatoric or epistemic, are all represented through prob-

ability, which are usually characterized by their probability density

functions (PDF). During the Bayesian calibration, the posterior dis-

tributions of the parameters are obtained through Bayes’ rule: 

p( z | d ) ∝ p( d | z ) p( z ) (1)

where random vector z represents the model parameters and d the

experimental observation. Here p( z ) is the prior distribution of the

model parameters and p( d | z ) is the likelihood, the calculation of

which requires the computer model output and the experimental

observation, combined by the constructed stochastic model. After

calibration, the model prediction is done by propagating the PDF

of the input parameters through the simulation code to obtain the

posterior PDF of the QoIs, which is expressed as: 

p( ̃  q | d )= 

∫ 
p( ̃  q , z | d ) d z = 

∫ 
p( ̃  q | d , z ) p( z | d ) d z = 

∫ 
p( ̃  q | z ) p( z | d ) d z 

(2)

where ˜ q represents the QoIs. In this work the stochastic model

is constructed simply by accounting for the model inadequacy
hrough a multiplicative Gaussian random variable : 

˜  = (1 + η) M ( x , z ) (3)

here η is a random vector with each component ηi as zero

ean, independent and identically distributed Gaussian: i.e. ηi ∼
 (0 , σ 2 ) . M ( x , z ) is the output of QoIs from our simulation

ode, depending on the explanatory variable x (e.g. Mach number,
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Fig. 8. The computational domain and the final mesh for Case 1 in Table 2 . 

Fig. 9. The design process based on GPML for the surrogate construction of M( z 1 ) | z = ̄z \ z 1 . The training points, m ( z ) and m ( z ) ± 3 σ ( z ) are shown, where m ( z ) is the mean 

function of the posterior GP and σ ( z ) the variance. 
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eynolds number etc.) and the model parameter z . ˜ q can be related

o the experimental observation d as: 

 = ˜ q + e (4) 

ere e represents the measurement error, which is modeled as a

ero mean, independent and identically distributed Gaussian, i.e.

 i ∼ N (0 , σ 2 
e ) . σ e is determined from the corresponding experi-

ents. Thus from Eqs. (3) and (4) we can relate the model output

o the experimental observation, and we can obtain: 
 | σ, z ∼ N ( μ, λ) (5) 

here 

= M ( x , z ) and λ = M 

T ( x , z ) σ 2 M ( x , z ) + σ 2 
e I (6) 

ith the prior distribution specified by the modeler and the

tochastic model constructed as Eq. (5) , we can recast Eq. (1) as: 

p( θM 

| d ) ∝ 

1 √ 

(2 π) N d | λ| exp 

(
−1 

2 

δ
T 
λ−1 δ

)
p( θM 

) (7) 
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Fig. 10. The surrogate constructed by gPC-based SC method with sparse grid level 

l = 4 . 
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where θM 

denotes { σ, z } , N d is the dimension of the experimen-

tal observation, | λ| represents the determinant of λ, and δ = d −
M ( x , z ) . Then a sampler is employed to obtain samples accord-

ing to Eq. (7) and the kernel estimation is used to evaluate the

posterior distributions of the model parameters. In this work an

adaptive Metropolis-Hastings MCMC sampler [30] , as implemented

in the R [31] package MHadaptive [32] , is employed. The sam-

pling procedure involves a large number of evaluations of M ( x , z )

thus the construction of a surrogate model for M ( x , z ) is usually

needed. 

2.2. Surrogate modeling 

To construct the surrogate for M ( z ) (we omit the explanatory

variable x hereafter for brevity), the adaptive HDMR is employed

to decompose the original moderately high dimensional problems

into several subproblems with lower dimensions, which are then

solved with gPC-based SC method. The CUT-HDMR of M ( z ) is de-

fined as [8,33] 

M ( z ) = 

∑ 

u ⊂D 

f u (z u ) = 

∑ 

u ⊂D 

∑ 

v ⊂u 

(−1) | u |−| v | M (z v ) | z = ̄z \ z v (8)
Fig. 11. The sensitivity analysis for the selection of HDMR term
here D = { 1 , 2 , . . . , N z } , f u (z u ) = f i 1 ... i s (z i 1 , . . . , z i s ) for

 = { i 1 , i 2 , . . . , i s } and by convention f ∅ (z ∅ ) = f 0 , N z represents

he input dimension and { ̄z i } is the reference point. Specifically,

he zeroth-order component function f 0 = M ( ̄z ) , the 1st-order

erm f i (z i ) = M ( ̄z 1 , . . . , z i , . . . , ̄z N z ) − f 0 and the 2nd-order term

f i, j (z i , z j ) = M ( ̄z 1 , . . . , z i , . . . , z j , . . . , ̄z N z ) − f i (z i ) − f j (z j ) − f 0 . Re-

pectively they represent the mean, the 1st-order correlation and

he 2nd-order correlation effects of the input parameters on the

odel output. In this work, the implementation of HDMR is the

ame as in our previous work [7] and the interested reader may

efer to [7] for all the details. 

After decomposing the original high dimensional problems into

ubproblems, the gPC-based SC method is employed to construct

he surrogate for the subproblems. In this work the GPC [34] R

ackage is employed for the code implementation. As the so-

onstructed surrogate suffers from the problems of oscillations, es-

ecially when the response surface has local discontinuities, we

ropose an alternative approach based on GPML to solve the sub-

roblems. 

. Gaussian process machine learning 

In this section we describe the GPML approach used for

onstructing the surrogate. The interested reader may refer to

10,16,17] for further details. 

In Gaussian process regression, M ( z ) is assumed as a random

unction with the prior distributions: 

 ( z ) ∼ GP (m ( z ) , k ( z , z ′ )) (9)

ere m ( z ) is the mean function, k ( z , z ′ ) is the covariance

unction of the Gaussian process. Usually the mean func-

ion is taken to be zero for notational simplicity. Given

he experimental design { z (1) , z (2) , . . . z (N z ) } and the corre-

ponding model evaluations { M ( z (1) ) , M ( z (2) ) , . . . M ( z (N z ) ) } ,
he joint distribution of the training outputs

 ( z (T r) ) and the test outputs M ( z (∗) ) according to

q. (9) is 

M ( z (T r) ) 

M ( z (∗) ) 

]
∼ GP 

(
0 , 

[
K(Z T r , Z T r ) K(Z T r , Z ∗) 
K(Z ∗, Z T r ) K(Z ∗, Z ∗) 

])
(10)

here K ( Z Tr , Z ∗) denotes the N z × N 

∗ matrix of the covariance func-

ion k ( z , z ′ ) evaluated at all pairs of training and test points, and

imilarly for the definitions of K ( Z Tr , Z Tr ), K ( Z ∗, Z Tr ) and K ( Z ∗, Z ∗).

fter conditioning this joint Gaussian prior distribution on the ob-

ervations we can obtain the posterior distribution of M ( z ) : 

 ( z ) ∼ GP ( K (Z ∗, Z T r ) K (Z T r , Z T r ) −1 M ( z (T r) ) , 
s. The details of weight definitions can be found in [7] . 
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Fig. 12. The posterior distributions of the model parameters ( a 1 , κ , β∗), with surface drag as the calibration dataset. 

Fig. 13. The posterior distributions of the hyperparameter σ h , with surface drag as 

the calibration dataset. 

T  

t  

u

M

Fig. 14. The posterior distribution of the skin friction coefficient C f , with surface 

drag as the calibration dataset. 

V

T  

G  

p  
K(Z ∗, Z ∗) − K(Z ∗, Z T r ) K(Z T r , Z T r ) −1 K(Z T r , Z ∗)) (11) 

hen for constructing the surrogate, the mean function is used as

he surrogate of the response surface and the variance function is

sed as the error indicator: 

 S ( z 
∗) = K ( z ∗, Z T r ) K (Z T r , Z T r ) −1 M ( z (T r) ) (12) 
H  
 ar M S 
( z ∗) = K( z ∗, z ∗) − K( z ∗, Z T r ) K(Z T r , Z T r ) −1 K(Z T r , z ∗) (13) 

he choice of the covariance function k ( z , z ′ ) is a key issue in

PML and various covariance functions can be used in practice, de-

ending on the problem at hand and the available training data.

ere in this work the sum of a squared exponential covariance
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Fig. 15. The posterior distribution of the Van Driest transformed velocity U vd , with 

surface drag as the calibration dataset. 
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function and an independent white noise covariance function is

employed: 

k ( z , z ′ ) = k SE ( z , z ′ ) + k white ( z , z ′ ) = σ 2 
1 exp 

(
− ( z − z ′ ) 2 

2 l 2 

)
+ σ 2 

2 δz z ′ 

(14)

More complicated, non-stationary covariance functions can be em-

ployed when the problem at hand is more complex(e.g. high di-

mensional problems) and more training data can be obtained. The

determination of the hyperparameters (σ 2 
1 
, 1 /l 2 , σ 2 

2 
) (denoted as θ

hereafter) is done by maximizing the log marginal likelihood: 

logp(M | z , θ) = −1 

2 

M ( z (T r) ) T K(Z T r , Z T r ) −1 M ( z (T r) ) 

−1 

2 

log| K(Z T r , Z T r ) | − N z 

2 

log(2 π) (15)

In this work, the gptk R package [35] is employed for the GPML, in

which an optimizer based on conjugate gradients is employed to

determine the hyperparameters. 

3.1. Design of the sampling points 

The variance function V ar M S 
( z ∗) obtained by GPML method

can be used as the error indicator of the constructed surrogate,

which provides a consistent way for the design of the sampling

points in computer experiments. Specifically, a new sampling point

should be added where the corresponding variance is the great-

est. In practice, the newly-added sampling point may be too close

to the already-selected points, making the matrix K ( Z Tr , Z Tr ) ill-

conditioned, thus a random noise is added to the design position

of the new sampling points to prevent this situation. Specifically,

we iterate the design process of the new point by adding a random

noise until the new point is not too close to the previous ones.

In addition, for some cases during the sequential design, the op-

timizer may obtain extreme values for the hyperparameters, mak-

ing the constructed surrogate highly irregular. In this case, the op-

timized hyperparameters from the previous design are employed.

Also, the design based on the variance function become unreason-

able when the value of the variance function is too small, i.e. 10 −6 

of the mean function magnitude. However, this poses no real prob-

lem for the current investigations, since it is sufficient to stop the
esign procedure when the variance function decreases to such

 small value. The overall algorithm for the design of sampling

oints is summarized below as Algorithm 1 . 

lgorithm 1 the surrogate construction method based on GPML. 

1: Initialize the set of training points T r by including only the

points at the vertices and center of the input random space

R. Evaluate corresponding model output M ( z ) for z ∈ T r and

store them in the set M T r . 

2: Set the set of testing points T e by including the regular tensor

grid points or Monte-Carlo sampling points of the input space

R. 

3: Set the initial hyperparameters θinit . 

4: Set the allowed space � for optimizing the hyperparameters. 

5: Set the maximum number of model evaluations N z . 

6: i ← dim (T r ) . 

7: while i < N z + 1 do 

8: % Set the allowed minimum distance between the training

points. 

9: Dist = ε1 /i ; 

10: % Set the standard deviation of the noise to be added to the

new point. 

11: sd N = n 1 ∗ Dist . 

12: Based on the training set { T r , M T r } , compute M S ( z ) and

V ar M S 
( z ) for z ∈ T e with the GPML method with the hyper-

parameter θopt , which is determined by maximizing the log

marginal likelihood with an initial value θinit . 

13: if θopt / ∈ � then 

14: Compute the M S ( z ) and V ar M S 
( z ) for z ∈ T e with the

hyperparameter θinit 

15: θopt ← θinit 

16: end if 

17: θinit ← θopt . 

18: % Set the new sampling point z new 

as the point where the

variance V ar M S 
( z ) reach maximum. 

19: z new 

← argmax (V ar M S 
( z )) + max { min [ N (0 , sd N ) , 3 sd N ] , −3 sd

0: if max (V ar M S 
( z )) < ε2 then 

21: i ← N z + 1 

2: end if 

3: if | z − z new 

| > Dist for ∀ z ∈ T r then 

24: % Update the training set { T r , M T r } 
5: T r ← T r ∪ { z new 

} 
6: M T r ← M T r ∪ { M ( z new 

) } 
27: i ← i + 1 

8: end if 

9: end while 

0: % The training set { T r , M T r } , the constructed surrogate M S ( z )

and the corresponding error assessment V ar M S 
( z ) are finally

obtained. 

emark :In this work, θinit = (1 , 1 , 10 −8 ) , � = (10 −2 , 10 2 ) ×
(0 , 10) × (10 −8 , 10 −1 ) , ε1 = 10 −1 , n 1 = 1 , ε2 = 10 −6 . The design

rocess is not sensible to θinit , ε1 and n 1 as long as a reasonable

nitial value is specified to make the process start. � is determined

y trial and error and we try to keep it as large as possible as long

s the optimization process does not result in extreme values and

ast oscillatory response surfaces. We have used the full tensor

niform grid as the testing set in the following applications (60 0 0

oints are used for the 1D cases and 80*80 points are used for the

D case). 

. Application to simple mathematical functions 

Here we apply the proposed UQ approach to simple mathemat-

cal functions, including both smooth functions and functions with
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Fig. 16. The posterior distributions of the model parameters ( a 1 , κ , β∗), with velocity profile as the calibration dataset. 

Fig. 17. The posterior distributions of the hyperparameter σ h , with velocity profile 

as the calibration dataset. 

d  

p  

o

Fig. 18. The posterior distribution of the Van Driest transformed velocity U vd , with 

velocity profile as the calibration dataset. 

4

 

c

iscontinuities, to demonstrate its accuracy and efficiency. A com-

arison with the baseline UQ approach is also shown. The details

f the gPC implementation can be found in [7] . 
.1. 1D Step function 

The proposed approach is first applied to a function with dis-

ontinuities, i.e. the 1D step function defined on [ −1 , 1] : 
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Fig. 19. The posterior distribution of the skin friction coefficient C f , with velocity 

profile as the calibration dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. The posterior distribution of a 1 over a wide range of Mach numbers. 
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M ( z ) = 

{
0 , z ∈ [ −1 , 0) 

1 , z ∈ [0 , 1] 
(16)

The prior distribution of the model parameter is assumed as: z ∼
U (−1 , 1) . The model inadequacy term is neglected and the poste-

rior is expressed as: 

p( z | d ) ∝ 

1 √ 

(2 π) N d | λ| exp 

(
−1 

2 

δ
T 
λ−1 δ

)
p( z ) (17)

where the dimension of the experimental observation N d = 1 , λ =
σ 2 

e I where σe = 0 . 1 and δ = d − M (z) . Here a single observation

is artificially generated by d = M ( z exact ) + e where z exact = 0 . 3 and

e ∼ N (0 , σ 2 
e ) . 

The surrogates constructed by the GPML method and gPC-based

SC method are shown in Fig. 1 . Oscillation characteristics of Gibbs’

phenomena are observed for the gPC-based SC method and the

discontinuity of the forward model is captured well by the GPML

method. To further examine the accuracy and efficiency of the

proposed surrogate modeling method, we define the standardized

mean squared error (SMSE) between the surrogate and the exact

function as: 

SMSE = 

1 

N test 

N test ∑ 

1 

(M S ( z i ) − M ( z i )) 
2 /V ar[ M ( z i )] (18)

In this work the uniform grid with the dimension N test = 60 0 0

is used as the test points to evaluate the SMSE. Fig. 2 shows

the SMSE with respect to the size of the training set. The GPML

method performs better than the gPC-based SC method. After ex-

amining the forward model approximation, the inverse problem is

solved and the results are shown in Fig. 3 . The GPML surrogate has

oscillations that are much more localized in space near the discon-

tinuity, thus only a small discrepancy is observed nearby z = 0.0 in

Fig. 3 , while the oscillations in gPC surrogate lead to much larger

discrepancies at around z = 0.5 and z = 0.8. 

4.2. 1D Smooth function 

After testing the proposed approach for a function with dis-

continuities, its application to a smooth function, i.e. M ( z ) =
sin (πz / 2) , is investigated for completeness. 
The surrogates constructed by the GPML method and gPC-based

C method are shown in Fig. 4 and the standard mean squared

rrors are shown in Fig. 5 . The surrogates constructed by both

ethod match the exact function well. The SMSE results show that

he GPML method is much more efficient than the gPC-based SC

ethod. 

.3. 2D Step function 

The GPML method can be easily extended to high dimensional

roblems, while the design of the nodal set for high dimensional

roblems is a delicate issue for the gPC-based SC method. Here we

emonstrate the efficiency and the flexibility of the GPML method

y applying it to a 2D step function: 

 ( z ) = 

{
0 , z 1 + z 2 ∈ [ −1 , 0) 

1 , z 1 + z 2 ∈ [0 , 1] 
(19)

The surrogates constructed by the GPML method and gPC-based

C method are shown in Fig. 6 and the standard mean squared

rrors are shown in Fig. 7 . As can be seen, the SMSEs reach the

ame level for the two methods but gPC-based SC method needs

uch more training samples than the GPML. In addition, the GPML

xhibits an oscillatory behavior that is much less serious than the

PC approach. 

. Application to SST turbulence modeling 

After testing the surrogate modeling method based on GPML

or simple mathematical functions, we investigate the application

f the proposed approach to the two-equation SST model for the

ypersonic flow configurations. 

.1. SST turbulence model formulation 

In this section, the two-equation SST model of Menter [22] is

riefly described and the corresponding model parameters are

dentified. The SST model is formulated as: 

∂(ρk ) 

∂t 
+ 

∂(ρu j k ) 

∂x j 
= 

∂ 

∂x j 

[
(μ + σk μt ) 

∂k 

∂x j 

]
+ P k − β∗ρkω (20)
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Fig. 21. The posterior distribution of κ over a wide range of Mach numbers. 
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Fig. 22. The posterior distribution of β∗ over a wide range of Mach numbers. 
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∂(ρω) 

∂t 
+ 

∂(ρu j ω) 

∂x j 
= 

∂ 

∂x j 

[
(μ + σω μt ) 

∂ω 

∂x j 

]
+ αρS 2 − βρω 

2 

+2(1 − F 1 ) 
ρσω 2 

ω 

∂k 

∂x j 

∂ω 

∂x j 
(21) 

here F 1 is defined by: 

 1 = tanh 

{ [
min 

(
max 

( √ 

k 

0 . 09 ωd 
, 

500 μ

ρd 2 ω 

)
; 4 ρσω 2 k 

CD kω d 
2 

)]4 
} 

(22) 

ith 

D kω = max 

(
2 ρσω 2 

ω 

∂k 

∂x j 

∂ω 

∂x j 
; 10 

−20 

)
(23) 

he turbulent eddy viscosity is defined as: 

t = min 

[
ρk 

ω 

, 
ρa 1 k 

�F 2 

]
(24) 

here F 2 is defined as: 

 2 = tanh 

{ [
max 

(
2 

√ 

k 

0 . 09 ωd 
, 

500 μ

ρd 2 ω 

)]2 
} 

(25) 

nd all the model parameters are obtained by φ = F 1 φ1 + (1 −
 1 ) φ2 , where φ represents the parameter in { σ k , σω , β , γ }. The

odel parameters { a 1 , κ, β∗, σk 1 
, σω 1 , β1 , σk 2 

, σω 2 , β2 } are speci-

ed and { γ 1 , γ 2 } are calculated by γ1 = β1 /β
∗ − σω 1 κ

2 / 
√ 

β∗ and

2 = β2 /β
∗ − σω 2 κ

2 / 
√ 

β∗. The total 9 model parameters with their

ominal values are reported in Table 1 . The prior distribution

eeds to be specified to carry out the Bayesian calibration. In this

ork, the uniform distribution is used and the prior range is ob-

ained by perturbing the nominal values by ± 40%. This is deter-

ined by trial and error in order to keep the parameter range as

arge as possible while keeping the computational cost manage-

ble. 

.2. Numerical methods and grid generation 

All the numerical simulations are carried out in our in-house

hree-dimensional compressible Navier-Stokes solver. The com- 
ressible Navier-Stokes equations are solved with Roe’s finite vol-

me, upwind algorithm. By means of the monotone upstream-

entered schemes for conservation laws interpolation of the primi-

ive variables, the quantity in the inviscid fluxes is obtained. The

iscous flux terms are calculated by a second-order central dif-

erence scheme. Lower Upper Symmetric Gauss Seidel (LU-SGS)

cheme is used for temporal integration. The no-slip, constant

all temperature conditions are imposed. The mesh independence

tudy has been carried out and the final mesh dimension is 161 in

all-normal direction and ranges from 401 to 801 in streamwise

irection for different scenarios, depending on the size of the com-

utational domain. The near wall spacing is 10 −6 m, making y + less

han one over most part of the plate. The final mesh used for Case

 in Table 2 is shown in Fig. 8 . The leading edge of the plate is lo-

ated at X = 0 and the symmetrical boundary condition is imposed

rior to the leading edge. In addition, the meshes used for other

cenarios only differ with this one in streamwise dimension as the

omain length is different for each scenario in order to include the

NS measurement location, which is determined by matching the

oundary layer thickness. 

.3. Specification of the flow class and QoIs 

The flow configurations of our primary interest are the hyper-

onic turbulent flows over flat plate with a wide range of Mach

umbers and we are interested in predicting the skin friction

oefficients ( C f ) with quantified uncertainty. The collection of the

orresponding experimental data is a key issue for solving the

nverse problems, and a number of experimental databases and

he DNS databases can be found in the literature. Here in this

ork, the skin frictions for the hypersonic flows over flat plate

f the DNS database reported by Duan et al. [28] are used as

he experimental data. The corresponding flow conditions and

xperimental data are reported in Table 2 . The skin friction is

eported at the location with a specified boundary layer thickness

n this DNS database. In this work we calibrate our RANS results

gainst their DNS results at the streamwise location where the

oundary layer thickness is matched. In practice, we find that the

ow remains laminar for certain parameter range and the corre-

ponding boundary layer growth is very slow, thus a very long

omain will be required in RANS simulations in order to match
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Fig. 23. the turbulence Mach number profiles M t ( y ) for all the flow cases listed in 

Table 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

t  

l  

T  

v  

a  

t

 

e  

m  

c  

s  

t  

w  

c  

d  

v  

d  

c  

o  

a  

l  

o

 

r  

i  

p  

b  

d  

t

p  

s  

i  

a  

d  

a  

t

 

o  

n  

t  

t  

a  

a  

fi  

m  

d

6

6

 

n  

c

 

w  

i  

a

s  

p

the boundary layer thickness with DNS. To prevent this situation,

we further narrow down the prior range of a 1 . It is worth noting

that this has little impact on the final results, since the parameter

range causing laminar results will lead to very small posterior

probabilities if included in the prior. The final range of the model

parameters is reported in Table 1 . 

5.4. Calibration results 

The input-output mapping is denoted as M ( z ) with z =
(a 1 , k, β∗, σk 1 

, σω 1 , β1 , σk 2 
, σω 2 , β2 ) . The prior distribution of the

model parameter is determined by Table 1 and the stochastic

model is constructed following Section 2.1 . The measurement er-

ror is neglected for stochastic model construction and the mis-

matches between the RANS predictions and DNS predictions are

accounted for through the model inadequacy. 3 × 10 5 MCMC sam-

ples are generated to estimate the posterior distributions, with a

burn-in length of 10 4 . 

First, the Mach 3 flow over a flat plate is investigated. The sur-

rogates for M ( z 1 ) | z = ̄z \ z 1 constructed by the GPML method and

gPC-based SC method are compared. The design process based

on GPML is shown in Fig. 9 and the surrogate constructed by

gPC-based SC method is shown in Fig. 10 . Each subfigure of

Fig. 9 shows the variation of C f measured at the point correspond-

ing to the nominal thickness of Case 1 in Table 2 as a function of

a 1 with the other model parameters taken fixed to their nominal

values. As can be seen, the surrogate modeling error drops grad-

ually with the inclusion of new design points. The final surrogate

with GPML method performs well while oscillation characteristics

are observed for the gPC-based SC method. All the following re-

sults are obtained with the GPML method. 

The sensitivity analysis is then carried out for the selection of

the HDMR terms. As can be seen from Fig. 11 , a 1 , κ and β∗ are the

first three most important dimensions and account for over 90% of

the total variance of the first order terms. By adaptively selecting

the HDMR terms, only f 0 , f 1 ( z 1 ) , f 2 ( z 2 ) , f 3 ( z 3 ) , f (1 , 3) ( z 1 , z 3 ) and

f (2 , 3) ( z 2 , z 3 ) are included in the HDMR of M ( z ) . The posterior dis-

tributions of the model parameters ( a 1 , k, β∗) and hyperparameter

σ h are shown in Figs. 12 and 13 . As can be seen, the model param-

eter κ is well informed, and κ has the most significant impact on
he surface drag as it affects significantly the log layer profile. The

urbulence drag reduction research usually pays attention to the

og layer profile in order to analyze the drag reduction mechanism.

he results also show that the coefficients affecting the turbulence

iscosity term ( a 1 ) and the dissipation term of k equation( β∗) are

lso important for the drag prediction. This sensitivity analysis is

rue for all the scenarios listed in Table 2 . 

After obtaining the posterior distributions of the model param-

ters, the posterior model check is done by just propagating the

odel parameters through the SST model. We do not include the

ontribution of the model inadequacy terms in the following re-

ults so that we can also make predictions for other flow quanti-

ies. The results are shown in Fig. 14 . The predicted skin friction

ith quantified uncertainty matches well with the DNS data, indi-

ating that the Bayesian calibration is done successfully. The pre-

ictions of other quantities can also be carried out, such as the

elocity profile, which is shown in Fig. 15 . As can be seen, the pre-

icted uncertainty overlaps well with the DNS data. However, the

alibrated mean results are not so good as the nominal one in the

uter region, which is reasonable since we calibrate the SST model

gainst the surface drag (the near wall information) but not the ve-

ocity profile. The prediction of different quantities clearly depends

n the dataset used during calibration. 

In addition to the results calibrated against C f , the calibration

esults against the velocity profile are also given here, as is shown

n Figs. 16 and 17 . The posterior prediction results of the velocity

rofile and the surface drag are shown in Figs. 18 and 19 . As can

e seen, the model parameters are clearly identified and the pre-

ictive uncertainties of both C f and U vd are greatly reduced. Even

hough the prediction of U vd matches well with DNS data, the C f 
rediction performs worse than the results calibrated against C f it-

elf (shown in Fig. 14 ). Thus we use only C f (the QoIs) as our cal-

bration dataset in this work. The inclusion of both surface drag

nd flow field information (e.g. velocity profiles) in the calibration

ataset is also worth investigating in the future, in order to achieve

 better compromise between the accurate prediction of QoIs and

he reduction of the prediction uncertainty. 

After the successful calibration of the Mach 3 flow, we carry

ut the Bayesian calibration for flows over a wide range of Mach

umbers as listed in Table 2 , and the posterior distributions of

he model parameters are shown in Figs. 20–22 . As can be seen,

he calibration results are different for each scenario, and there is

 clear parameter variability across scenarios. These results serve

s the preparation step for the model predictions with quanti-

ed uncertainty. In the next section, a Bayesian scenario-averaging

ethod is proposed to combine all these calibration results in or-

er to make predictions for new scenarios. 

. Model prediction with quantified uncertainties 

.1. Bayesian scenario-averaging 

After Bayesian calibration, the model prediction for a new sce-

ario is carried out by taking all the calibration results into ac-

ount. The posterior distribution of the QoIs is expressed as: 

p( ̃  q | d ) = 

I s ∑ 

i =1 

∫ 
p( ̃  q , S i , z | d i ) d z = 

I s ∑ 

i =1 

∫ 
p( ̃  q | z ) p( z | d i , S i ) P (S i ) d z 

(26)

here S i represents the i th scenario, d i represents the correspond-

ng experimental data, I s represents the total number of scenarios

nd P ( S i ) represents the probability mass function (PMF) of the i th 

cenario. Then the prediction mean and variance of the QoI are ex-

ressed as: 
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Fig. 24. The scenario weights determined as described in Section 6.2 . 
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[ ̃  q | d ] = 

I s ∑ 

i =1 

P (S i ) E i [ ̃  q | d i ] (27) 

 ar[ ̃  q | d ] = 

I s ∑ 

i =1 

P (S i ) V ar i [ ̃  q | d i ] + 

I s ∑ 

i =1 

P (S i )(E i [ ̃  q | d i ] − E[ ̃  q | d ]) 2 

(28) 

here E i [ ̃ q | d i ] and V ar i [ ̃ q | d i ] represent the posterior expectation

nd variance of the QoIs with the model parameters calibrated

gainst the i th scenario. 

.2. Determination of the scenario weights 

The probability mass function P ( S i ) needs to be specified in

rder to make predictions. Here a physics-based method to de-

ermine the scenario weights is proposed, which is based on the

ean squared value of the difference of certain quantities between

cenarios. As the numerical simulations with SST turbulence mod-

ls may be greatly undermined when the compressibility effects

re important, we choose the turbulence Mach number, which is

efined as follows, to characterize the compressibility effects and
etermine the corresponding weights of each scenario. 

 t (x, y ) = 

√ 

2 k (x, y ) 

a (x, y ) 
(29) 

here k is the turbulent kinetic energy, a is the local speed of

ound and ( x, y ) represents the location in streamwise and wall-

ormal direction. Here we use only the profile M t ( y ) at the stream-

ise location where the skin friction is measured. Fig. 23 gives the

orresponding turbulence Mach number profiles M t ( y ) for all the

ow cases listed in Table 2 . We denote the mean squared value of

he difference of M t ( y ) between scenario S i and S j as D i, j , then the

cenario weight P ( S j ) when predicting for the scenario i is deter-

ined by: 

 (S j ) = 

1 /D i, j ∑ I s 
j=1 

1 /D i, j 

(30) 

ere the purpose of using turbulence Mach number instead of ex-

ernal Mach number is to characterize the scenarios by flow field

eatures, in order to extend the approach in the future to more

eneral cases such as different wall temperatures, different geome-

ries. In such cases, the turbulent Mach number may still be useful

ut the external one cannot characterize the compressibility effects

orrectly. 
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Fig. 25. The prediction mean of the QoIs with quantified uncertainty( ±σ ). The 

DNS data and the nominal SST model results are also shown. 
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6.3. Prediction results 

In this section, the model prediction is carried out, with the

model parameters calibrated in Section 5.4 . The prediction for the

i th scenario is done by excluding the calibration results of the

i th scenario and taking all the others into account. The scenario

weights are determined as described in Section 6.2 and the results

are shown in Fig. 24 . After determining the scenario weights, the

surrogate is constructed for the forward propagation and the pos-

terior distribution of the QoIs is obtained according to Eqs. (26) –

(28) . The results are shown in Fig. 25 . As can be seen, the pre-

diction confidence level matches well with the DNS data, and the

prediction mean values perform better than the nominal SST. As

the prediction for each scenario does not make use of the corre-

sponding DNS data of the same scenario, the results demonstrate

the ability of the proposed approach in making reliable predictions

for new, unknown scenarios. 

7. Conclusion 

In this work, an efficient Bayesian UQ approach is proposed.

It is demonstrated that it can handle both continuous response

surfaces and discontinuous surfaces, and the computational bur-

den for the application in high dimensional problems is reduced.

Its applications to simple mathematical functions are investigated,

demonstrating its efficiency and accuracy for both continuous

function and function with discontinuities. The computer de-

sign of the sampling points based on GPML is also proposed

and the results show that the proposed method is promising in

terms of both efficiency and extensibility to high dimensional

problems. 

After testing the proposed approach with simple mathematical

functions, it is applied to the two equation SST turbulence model

for hypersonic flow over flat plate over a wide range of Mach num-

bers. The sensitivity analysis shows that the model parameters a 1 ,

κ and β∗ are the first three most important dimensions and the

inclusion of only the first-order and second-order terms in the

HDMR is sufficient. The Bayesian calibration is done by employing

the so-constructed surrogate and the posterior model check shows

that the model predictions with quantified uncertainty match well
ith the DNS data, for both the variable used for calibration and

he other flow variable, i.e. velocity profile. 

When making predictions for a new flow scenario, the Bayesian

cenario-averaging is employed and a method based on the mean

quared values of the difference of chosen physical quantities

etween scenarios is proposed to determine the scenario weights.

s the numerical simulations with SST turbulence models may be

reatly undermined when the compressibility effects are impor-

ant, we choose the turbulence Mach number to characterize the

ompressibility effects and determine the corresponding weights

f each scenario. The results show that the prediction mean values

atch well with the DNS data and the corresponding uncertainties

re well captured. In terms of efficiency, 50 code runs are typically

equired for the final prediction of each scenario, comparing tens

f thousands of code runs for direct model evaluations. The choice

f the quantities to characterize each scenario depends on both

he problems at hand and the computer models that are used

n the simulations. When applying the proposed approach with

ther computer models or for other flow scenarios, the choice

ay be different. In addition, through Bayesian scenario-averaging,

he predicted uncertainties will be quite large if the predicted

cenario is different from all the scenarios in the calibration

atabase. This is due to the automatic account of the parameter

ariability across scenarios through the 2 nd term in Eq. (28) .

hus this approach may capture the possible inappropriateness

f the calibration database and show them in terms of predicted

ncertainties. 

Future work may involve the further inclusion of the other sce-

arios in the DNS database reported in the literature and the in-

estigation of the impact of using different quantities as the cali-

ration dataset. After calibration with the reported database, it is

ery promising to apply the proposed approach to more complex

ow configurations, e.g. HIFiRE models, so that the predicted un-

ertainties can provide useful information for decision-making in

eal engineering applications. 
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