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A B S T R A C T

Accurate prediction of ocean waves plays an essential role in many ocean engineering applications, such as
the control of wave energy converters and floating wind turbines. However, existing studies on phase-resolved
wave prediction using machine learning mainly focus on two-dimensional wave data, while ocean waves
are usually three-dimensional. In this work, we investigate, for the first time, the phase-resolved real-time
prediction of three-dimensional waves using machine learning methods. Specifically, the wave prediction is
modeled as a supervised learning task aiming at learning mapping relationships between the input historical
wave data and the output future wave elevations. Four frequently-used machine learning methods are employed
to tackle this task and a novel Dual-Branch Network (DBNet) is proposed for performance improvement. A
group of wave basin experiments with nine directional wave spectra under three sea states are first conducted
to collect the data of 3D waves. Then the wave data are used for verifying the effectiveness of the machine
learning methods. The results demonstrate that the upstream wave data measured by the gauge array can be
used for control-oriented wave forecasting with a forecasting horizon of more than 20 s, where the directional
information provided by the upstream gauge array is vital for accurately predicting the downstream wave
elevations. In addition, further investigations show that by using only local wave data (which can be easily
obtained), the very short-term phase-resolved prediction (less than 5 s) can be achieved.
1. Introduction

As one of the main renewable energy sources, wave energy is an im-
portant and promising low-carbon alternative to fossil fuels. Although
many kinds of Wave Energy Converters (WECs) have been designed
and verified [1,2], when compared to solar and wind energy, wave
energy is still far from being commercially competitive [3]. One major
challenge in further reducing the cost of wave energy is the design
of a control technique suitable for various sea states. To improve the
control performance, the preview-based hydrodynamic control [4–6]
has been proposed where the controller is designed to react in advance
before the waves hit the WEC structures. It can significantly enhance
the power generation of WECs [7]. For example, the investigation
of an Azura WEC under experimental conditions showed that a 36%
improvement in power generation could be achieved by the Model
Predictive Control (MPC) compared with the standard fixed damping
control [8]. However, the WEC control is a non-causal optimal control
problem [9] where the current control decision must be based on
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the future wave excitation force [6]. Thus, the real-time forecasting
of the wave information is essential for executing energy-maximizing
controllers [10]. A feasible and promising scheme to obtain the future
wave excitation force is to compute it from wave elevation predic-
tions [11,12]. Indeed, as an essential technology in WEC control design,
wave elevation prediction has drawn a lot of attention and has now
become an active research area.

Based on the spectral transport and energy balance equations, the
traditional phase-averaged wave forecasting method aims at predict-
ing the wave spectrum instead of the wave profile shape [13]. The
frequently-used third-generation models such as WAVEWATCH III [14],
SWAN [15] and WAM [16] can provide statistical quantities, such
as sea states defined by 1-hour or 3-hour statistics, including the
significant wave height (𝐻𝑠), the peak spectral wave period (𝑇𝑝) and the
mean wave direction [17]. Although meaningful guidance for the WEC
design can be derived from these works, they cannot be used in real-
time WEC control applications as the phase-resolved wave elevation is
unavailable [18].
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Nomenclature

Abbreviations

2D Two-Directional
3D Three-Directional
ANN Artificial Neural Network
BN Batch Normalization
BNN Bayesian Neural Network
CBR CNN + BN + ReLU
CNN Convolutional Neural Network
CRNN Convolutional Recurrent Neural Network
DBNet Dual-Branch Network
GRU Gated Recurrent Unit
HF High Frequency
HOS Higher-Order Spectral
LSTM Long Short-Term Memory
MAE Mean Absolute Error
ML Machine Learning
MLP Multilayer Perceptron
MPC Model Predictive Control
NLS Non-Linear Schrödinger
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
RMSE Root Mean Square Error
SCRTP Scientific Computing Research Technology Plat-

form
SVM Support Vector Machines
WEC Wave Energy Converter
WG Wave Gauge

Symbols

𝐸 The expected loss
ℱ The ML model
𝐻𝑠 The significant wave height
𝐼 The whole number of predictions in the training

set
𝑙 The historical time steps for the input
ℒ The loss function
𝑚 The predicted time horizon using local wave

information
𝑁 The whole number of predictions in the test set
𝑛 The predicted time horizon using upstream wave

information
𝑇 The current time step
𝑇𝑝 The peak spectral wave period
𝒰𝐹 The reference future wave elevations measured

by wave gauges
�̂�𝐹 The approximate future wave elevations pre-

dicted by ML models
𝒰𝐻 The input historical wave information measured

by wave gauges
�̂�4

𝑇+1∶𝑇+𝑚 The approximate future wave elevation of WG4
predicted by the ML model from time steps 𝑇 + 1
to 𝑇 + 𝑚

𝒰4
𝑇−𝑙∶𝑇 The historical wave information measured by

WG4 from time steps 𝑇 − 𝑙 to 𝑇
𝒰2,5,6,7,8

𝑇−𝑙∶𝑇 The historical wave information measured by
WG2, WG5, WG6, WG7 and WG8 from time steps
𝑇 − 𝑙 to 𝑇
2

�̂�4𝑇+𝑛 The approximate wave elevation of WG4
predicted by the ML model at time step 𝑇+𝑛

𝑢4𝑇−𝑙 The wave elevation measured by WG4 at
time step 𝑇 − 𝑙

𝑢2,5,6,7,8𝑇−𝑙 The wave elevation measured by WG2,
WG5, WG6, WG7 and WG8 at time step 𝑇−𝑙

𝜆 The tradeoff parameter of 𝛷(⋅)
𝜃 The parameters of the ML model
𝛷 The regularization term

The phase-resolved wave model has drawn more and more attention in
recent years, which is of particular interest for the preview-based con-
trol of WECs [19]. To significantly enhance the performance of the WEC
controllers, a forecast with at least a 20 s time horizon is usually re-
quired [20]. However, achieving an accurate prediction for such a long-
time horizon is exceptionally challenging, which has become one of two
essential barriers in practical applications for WEC control (the other
barrier is the physical implementation of the control system) [21].
Although the models [22,23] based on linear wave theory can forecast
the downstream wave elevation from the upstream information in real-
time, they are only effective for the very short-term prediction and are
limited to the sea states with small steepness [17]. Thus, more and more
non-linear approaches such as Higher-Order Spectral (HOS) methods
have been proposed in recent years [24,25]. For example, a novel wave
forecast model coupling ensemble Kalman filter and HOS method was
proposed in [24] and enhanced in [26] by simultaneously estimating
the ocean current field. In practice, restricted by the intensive computa-
tional requirement of HOS, the reduced order or approximate equations
are usually considered efficient alternatives [19]. For example, many
prediction models are based on the model equations, such as the weakly
Non-Linear Schrödinger (NLS) models [27,28]. Typically, the high-
order NLS equation is an order faster than the HOS method but is less
accurate, as the former normally assumes a narrow-banded wave field
and small steepness [28].

Recently, Machine Learning (ML), a data-driven method, has shown
great potential in automatically capturing non-linear and hierarchical
features. A series of ML-based studies have been conducted to pre-
dict the statistical wave characteristics such as the significant wave
height [29–31], peak spectral wave period [32–34] and wave speed
[35]. The machine learning method has also been applied to phase-
resolved wave forecasting. For example, in [19], a Convolutional Re-
current Neural Network (CRNN) was proposed to predict non-linear
dispersive non-breaking wave evolution including rogue waves. The
Artificial Neural Network (ANN) was adopted by [17] for unidirectional
wave prediction. The ANN model was also applied in long-crest wave
prediction [18] and verified under unknown sea states [36]. Two fore-
cast algorithms, including an ML-based Support Vector Machines (SVM)
regression, were used in [37] to forecast wave elevations and wave
excitation forces, which were then applied for feed-forward control of
offshore floating wind turbines. The Bayesian Neural Network (BNN)
was also introduced and applied to phase-resolved real-time wave
prediction in [38], where both the aleatory and epistemic uncertainties
were thoroughly investigated. However, two critical limitations hugely
reduce their practical value in engineering applications. First, a single
model cannot handle different sea states. For example, in [18], four
ANN models were trained respectively for four different sea states
(i.e. sea state 4–7) and then used to forecast the corresponding wave
elevations. When generalizing a trained model to an unknown sea state,
the error would surge significantly (about 6 to 11 times compared to
the trained sea state) [36]. In [19], the performance of their CRNN was
only verified by sea state 6. Three ANN models were trained for three
different wave conditions in [39] based on simulated multi-directional
waves. Obviously, a universal model that can cope with different sea
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Fig. 1. The layout of the wave basin experiments, where WG2, WG5, WG6, WG7 and WG8 constitute the pentagonal gauge array.
Table 1
The comparison of the proposed wave forecasting method with existing methods in the literature, where Multiple means multiple models are
trained for different sea states and Universal means a single universal model is trained for different sea states.

Reference Main contribution Wave and model features

Data generation Wave dimensions Model

[18] An ANN-WP model for prediction Tank experiments 2D Multiple
[36] The ANN-WP for unknown sea states Tank experiments 2D Multiple
[37] Wave prediction for control Tank experiments 2D Multiple
[19] A CRNN model for prediction Numerical simulations 2D Multiple
[39] An ANN model for prediction Numerical simulations 2D & 3D Multiple
[17] An ANN model for prediction Numerical simulations 2D Universal
[38] The evaluation of prediction uncertainty Tank experiments 2D Universal
This work A DBNet model for 3D wave prediction Tank experiments 3D Universal
states is better than multiple models for different scenarios, as the
latter is not only time-consuming but also error-prone. Second, the
existing ML-based phase-resolved forecasting works still mainly focus
on unidirectional waves, such as [17,37]. In practice, ocean waves
are usually three-dimensional (3D) except for near-shore areas where
waves align due to shoaling [40]. Thus, the prediction of 3D ocean
waves needs great attention.

As shown in Table 1, the existing phase-resolved wave forecasting
methods based on deep learning mainly focus on 2D wave data, where
the only research involving 3D wave [39] is still based on simulation
data instead of more realistic tank experiments. Moreover, most deep
learning models for wave forecasting can only handle a single sea
state, while different sea states need multiple and separately-trained
models to predict. This issue seriously limits their practical use as the
model will need a pre-processing procedure to identify the state of
the input historical wave data. If the sea state was wrongly classi-
fied or the input data was not enough to be distinguished, then the
prediction accuracy would be very low as the adopted model would
not match the sea state (about 6 to 11 times lower compared to the
matched model for 2D waves [36]). To overcome the above limitations
of existing works, this paper employs four ML-based methods and
proposes a novel Dual-Branch Network (DBNet) for the phase-resolved
forecasting of 3D waves, where the ML models are designed to handle
multiple sea states simultaneously. To be specific, in this work, a group
of wave basin experiments is conducted first, where nine different
directional wave spectra under three sea states are generated. Then,
four frequently-used ML-based methods, including Gated Recurrent
3

Unit (GRU) network, Long Short-Term Memory (LSTM) network, Multi-
layer Perceptron (MLP) and Convolutional Neural Network (CNN), are
trained and adopted to forecast the wave elevation for all nine wave
conditions under three sea states without retraining multiple times.
Further, by combining the advantages of both MLP and CNN, a novel
DBNet is proposed with an MLP-based branch and a CNN-based branch
for wave prediction, which can predict future wave elevation with
better performance than the other four ML-based methods. As far as we
know, this work is the first attempt to apply machine learning for the
phase-resolved real-time forecasting of 3D waves based on wave tank
experiments. The results of the experimental data show that the relative
Root Mean Square Error (RMSE) of the proposed DBNet is about 11.6%
normalized by the significant wave height (averaged for nine wave
conditions), which is much better than the scheme for unidirectional
wave prediction in [36] (where the problem itself is easier than the
prediction of 3D waves) which generalizes a trained model to unknown
sea states (14.7% on average). The main contributions and novelties of
this paper are summarized as follows:

(1) The phase-resolved real-time forecasting of 3D waves using ma-
chine learning methods is comprehensively investigated. Two
major limitations of existing works that significantly hinder the
potential of ML-based wave prediction, i.e. the generalization of
the model to diverse sea states and the prediction of 3D waves
(the existing works based on ML and wave tank experiments are
all on 2D waves), are both tackled in this paper. The comparison
of the proposed wave forecasting method with existing methods
in the literature is summarized in Table 1.
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(2) The performance of four frequently-used machine learning meth-
ods, including GRU, LSTM, MLP and CNN, are investigated and
verified for the phase-resolved forecasting of 3D waves. More-
over, a novel DBNet is proposed to further enhance the accuracy
of ML-based methods which can take advantage of both MLP and
CNN.

(3) A series of wave tank experiments are conducted with nine
different directional wave spectra under three sea states. The
above five ML-based phase-resolved prediction models are then
trained, validated and tested to learn the mapping relationships
between the input historical wave data and the output future
wave elevations.

(4) Two types of input historical wave data are studied for predic-
tions of 3D waves, i.e. the upstream wave information measured
by the gauge array and the local wave information measured
by a single gauge. The quantitative results show that the former
can enable the model to achieve control-oriented phase-resolved
prediction (more than 20 s), while the latter can achieve very
short-term prediction (less than 5 s). Moreover, the significance
of the directional information for phase-resolved forecasting is
also demonstrated.

The remaining part of this paper is organized as follows: the wave
asin experiments, the problem formalization and the ML-based models
re described in Section 2. The results are reported and discussed in
ection 3. The conclusions are finally drawn in Section 4.

. Methodology

.1. Wave basin experiments

The wave basin experiments are conducted according to the char-
cteristics of the WaveHub test site located 16 km offshore from Hayle
n the north coast of Cornwall at the eastern edge of the Atlantic
cean with an average water depth of 50 m. Two High Frequency

HF) radars are installed to cover the same ocean area to obtain
he directional information of waves which collect 3161 hourly high-
uality directional wave spectra from April 2nd, 2012 to December 4th,
012. Then, the 𝐾-means clustering technique is employed to obtain
small number of conditions that can represent the characteristics

f the measured ocean area, where nine typical conditions clustered
n three groups are eventually determined. Based on the 𝐾-means

clustering results, those nine representative conditions are then divided
into three corresponding groups (one, three and five spectrum/spectra
in each group, respectively). After that, the corresponding wave basin
experiments are carried out based on the representative conditions.

As shown in Fig. 1, eight Wave Gauges (WGs) are mounted in the
basin to measure the wave elevation. Nine representative directional
wave spectra are created using a single summation method, which
means each frequency component has a unique wave direction. Based
on MATLAB, the wave creation files for different wave cases are cre-
ated by defining the wave amplitude, direction and phase angle with
corresponding frequency components. Before the creation of the input
file, each directional wave spectrum is adjusted to guarantee that the
dominant wave direction is the same as the wave maker direction. The
scale ratio of the wave is 1:25 and the repeat time for the directional
wave generation is 45 min (3.75 h in full scale with a scaling factor
of

√

25 using the Froude scaling law). For each condition, about 3.5 ×
05 points are sampled. The measured values of the significant wave
eight (𝐻𝑠) and the peak spectral wave period (𝑇𝑝) of each directional
pectrum are shown in Table 2.
4

Table 2
The measured 𝐻𝑠 and 𝑇𝑝 of nine directional wave spectra, which have been transformed
to the full scale.

Group Wave condition Sea state 𝐻𝑠 (m) 𝑇𝑝 (s)

1 1 4 1.875 8.845

2
2 5 2.550 8.930
3 5 4.000 9.890
4 4 1.400 8.310

3

5 4 1.325 8.385
6 5 3.375 9.575
7 6 4.775 10.565
8 5 3.300 8.645
9 4 2.300 8.655

2.2. Problem formalization

Two different types of inputs, i.e. the historical wave information
measured by the upstream gauge array and by the local gauge, are
investigated for the phase-resolved forecasting of 3D waves, which are
illustrated in Fig. 2.

For the first scenario, as shown in Fig. 2(a), the historical upstream
wave information from time steps 𝑇 − 𝑙 to 𝑇 measured by the WG2,
WG5, WG6, WG7 and WG8 is selected as the input, while the down-
stream future wave elevation from time steps 𝑇 + 1 to 𝑇 + 𝑛 measured
by WG4 is chosen as the output. Then, the target of an ML-based model
is to predict the future wave elevation, i.e. from �̂�4𝑇+1 to �̂�4𝑇+𝑛 based on
he historical upstream wave information, i.e. from 𝑢2,5,6,7,8𝑇−𝑙 to 𝑢2,5,6,7,8𝑇 ,

which can be expressed as:

�̂�4
𝑇+1∶𝑇+𝑛 = ℱ (𝒰2,5,6,7,8

𝑇−𝑙∶𝑇 ; 𝜃),

�̂�4
𝑇+1∶𝑇+𝑛 = (�̂�4𝑇+1, �̂�

4
𝑇+2,… , �̂�4𝑇+𝑛), (1)

𝒰2,5,6,7,8
𝑇−𝑙∶𝑇 = (𝑢2,5,6,7,8𝑇−𝑙 , 𝑢2,5,6,7,8𝑇−𝑙+1 ,… , 𝑢2,5,6,7,8𝑇 )

where ℱ is the ML-based model and 𝜃 represents the parameters of ℱ . 𝑙
means the historical time steps and 𝑛 indicates the predicted future time
steps. �̂�4

𝑇+1∶𝑇+𝑛 represents the future wave elevation of WG4 predicted
y the ML model from time steps 𝑇 +1 to 𝑇 + 𝑛, while 𝒰2,5,6,7,8

𝑇−𝑙∶𝑇 denotes
the historical wave information measured by WG2, WG5, WG6, WG7
and WG8 from time steps 𝑇 − 𝑙 to 𝑇 .

For the second scenario, as shown in Fig. 2(b), the historical local
wave information from time steps 𝑇 −𝑙 to 𝑇 measured by the WG4 itself
s selected as the input, while the future wave elevation from time steps
+1 to 𝑇+𝑚 measured by WG4 is chosen as the output. Then, the target

of an ML-based model is to predict the future wave elevation, i.e. from
̂4𝑇+1 to �̂�4𝑇+𝑚 based on the historical local wave information, i.e. from
𝑢4𝑇−𝑙 to 𝑢4𝑇 , which can be expressed as:

�̂�4
𝑇+1∶𝑇+𝑚 = ℱ (𝒰4

𝑇−𝑙∶𝑇 ; 𝜃),

�̂�4
𝑇+1∶𝑇+𝑚 = (�̂�4𝑇+1, �̂�

4
𝑇+2,… , �̂�4𝑇+𝑚), (2)

𝒰4
𝑇−𝑙∶𝑇 = (𝑢4𝑇−𝑙 , 𝑢

4
𝑇−𝑙+1,… , 𝑢4𝑇 )

where 𝑚 indicates the predicted future time steps. �̂�4
𝑇+1∶𝑇+𝑚 represents

the future wave elevation of WG4 predicted by the ML model from time
steps 𝑇 + 1 to 𝑇 + 𝑚, while 𝒰4

𝑇−𝑙∶𝑇 denotes the local historical wave
information measured by WG4 itself from time steps 𝑇 − 𝑙 to 𝑇 .

Hence, given an ML-based model ℱ , the target is to narrow the
gap between the predicted wave elevation approximation and the real
measured wave elevation as closely as possible by optimizing the
parameters 𝜃:

𝜃∗ = arg min
𝜃

𝐸(𝜃),

𝐸(𝜃) =
𝐼
∑

𝑖=1
ℒ (𝒰𝐹 , �̂�𝐹 ) + 𝜆𝛷(𝜃), (3)

ℒ (𝒰𝐹 , �̂�𝐹 ) = ℒ (𝒰𝐹 ,ℱ (𝒰𝐻 ; 𝜃)),
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Fig. 2. The phase-resolved real-time forecasting of 3D waves using (a) the wave information measured by the upstream gauge array and (b) the wave information measured by
the local gauge.
Fig. 3. The structure of the proposed DBNet, where FCLayer means the fully connected layer and CBR represents the convolutional layer with the BN operation and the ReLU
activation function.
where 𝒰𝐹 and �̂�𝐹 represent the future wave elevations measured by
the gauge and predicted by the ML model, while 𝒰𝐻 means the input
historical wave information. 𝐸(𝜃) indicates the expected loss, where
the loss function ℒ (𝒰𝐹 , �̂�𝐹 ) measures the disparity between the real
measured and predicted wave elevation and 𝛷(𝜃) is the regularization
term weighted by the trade-off parameter 𝜆. 𝐼 represents the whole
number of predictions in the training set.

2.3. Machine learning methods

As illustrated in Section 2.2, the input and output of the phase-
resolved wave forecasting are both time-series wave elevations, which
can be naturally modeled as a sequence-to-sequence problem from
the machine learning perspective [41,42]. Therefore, four frequently-
used sequence-to-sequence models, i.e. GRU, LSTM, MLP and CNN,
are employed for resolving the wave forecasting problem. Meanwhile,
to further improve the accuracy, a novel DBNet is proposed which
combines the advantages of MLP and CNN.

2.3.1. LSTM and GRU
LSTM and GRU are two typical Recurrent Neural Networks (RNNs),

while RNNs are designed to address sequential data with temporal
dependencies such as text, audio and video. The LSTM is proposed to
overcome the short-term memory problem of RNN [43]. An additional
memory cell is equipped to store the information and three gates,
5

Table 3
The detailed setting of each layer in the DBNet where the wave elevations measured
by the upstream gauge array are used as input.

Name Input size Output size Channel Kernel Stride Padding

CBR
Conv 1 × 5 × 300 4 × 5 × 300 4 (3, 7) (1, 1) (1, 3)
BN 4 × 5 × 300 4 × 5 × 300 4 – – –
ReLU 4 × 5 × 300 4 × 5 × 300 – – – –

Conv 4 × 5 × 300 1 × 300 1 (5, 3) (1, 1) (0, 1)
FCLayer1 1 × 5 × 300 1 × 300 – – – –
FCLayer2 1 × 300 1 × 85 – – – –

i.e. input gate, output gate and forget gate, are designed to control the
inside state of the LSTM cell. As a simple variant of LSTM, GRU only has
two gates, named the update gate and the reset gate [44]. Without any
extra memory cells to keep the information, what GRU can control is
only the information inside the unit. The number and size of the hidden
layer in the LSTM and GRU are set as 1 and 128 for the phase-resolved
wave prediction.

2.3.2. MLP
As one of the most classical kinds of neural networks, MLP consists

of three layers, i.e. the input layer, the middle hidden layer and
the output layer. Each layer constitutes several neurons, while each
connection between neurons has its own weight. The information flows
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𝑅

are unidirectionally transferred from the input layer to the output
layer, passing through the hidden layers. Those perceptrons in the same
layer share the same activation function, which is usually a sigmoid
function for the hidden layer. The activation function for the output
layer depends typically on the practical application, which can be a
sigmoid or a linear function. The MLP used in the comparison study
is a three-layer structure with a sigmoid activation function after the
second layer. The output sizes of the first two layers of the MLP are 256
and 128, while the length of prediction steps determines the output size
of the third layer.

2.3.3. CNN
CNN is originally employed for image pattern recognition with the

ability to extract hierarchical features. Normally, CNN is constructed by
four different layers: convolutional layer, non-linear activation layer,
pooling layer and fully connected layer. With a set of kernels, convolu-
tional layers convolve the input pixels, thereby generating the so-called
feature map that summarizes the presence of detected features in the
input. Then, the obtained feature map is activated by the element-wise
non-linear activation layers. Next, pooling layers aggregate adjacent
pixels based on the max or mean operation, which is not used in our
wave prediction task. Finally, each node in the previous layer is directly
connected to every node in the next layer by the fully connected layer.
For comparison, the structure of CNN is designed the same as the CNN-
branch (i.e. the CBR1, CBR2, CBR3, Conv and FCLayer2 in Fig. 3 with
the detailed setting in Table 3) of the proposed DBNet.

2.3.4. DBNet
Obviously, both linear and non-linear relationships exist between

the input historical wave information and output future wave elevation.
Thus, for phase-resolved forecasting of 3D waves, a novel Dual-Branch
Network is proposed where an extra MLP-based branch is designed to
be parallel with a CNN-based branch for enhancing linear features and
long-range dependencies. The structure of the proposed DBNet can be
seen in Fig. 3.

The MLP-based branch is a relatively simple structure constructed
with only a single fully connected layer without any activation func-
tion, i.e. FCLayer1 in Fig. 3. Without the activation function, the MLP
is a linear regression model which can only learn linear relationships in
the data. Meanwhile, as all input points are directly and fully connected
by the MLP layer, the long-range dependencies between the input can
be then captured. On the other hand, for the CNN-based branch, three
convolutional layers with the Batch Normalization (BN) operation and
the Rectified Linear Unit (ReLU) activation function, i.e. CBR1, CBR2
and CBR3, are stacked. With the ReLU, the non-linearity property can
be introduced to the CNN-based branch. Finally, the output of the CBR3
is fed into a convolutional layer to reduce the number of feature map
channels.

The features extracted by the MLP-based and CNN-based branches
are added first and then fed into the final fully connected layer,
i.e. FCLayer2, thereby generating the final future wave elevation se-
quence. The details of each component within the DBNet are provided
in Table 3.

2.4. Model training

The data collected by the wave basin experiment are first re-
sampled on a scale of 8, generating about 45,000 re-sampled points.
Then, each re-sampled point represents 0.3 s in the real world. There-
after, 40% of the re-sampled points (the first 18.0 min of each wave
condition) are selected as the training set, 10% (18.0–22.5 min of each
wave condition) for validation and 50% (the last 22.5 min of each wave
condition) for testing. For training the machine learning models, the
Mean Squared Error (MSE) is selected as the loss function:

ℒ (𝒰4
𝑇+1∶𝑇+𝑛, �̂�

4
𝑇+1∶𝑇+𝑛) =

1
𝑛

𝑇+𝑛
∑

𝑖=𝑇+1
(𝑢4𝑖 − �̂�4𝑖 )

2 (4)

By minimizing ℒ (⋅), the model is driven to approximate the real
measured wave elevation as closely as possible.
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2.5. Evaluation metrics

The performance of the ML-based models is evaluated by Mean
Absolute Error (MAE) to measure the mean absolute difference and
Root Mean Squared Error (RMSE) to reflect the square root of the
average squared difference:

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1

|

|

|

𝒰𝐹 − �̂�𝐹
|

|

|

(5)

𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝒰𝐹 − �̂�𝐹 )2 (6)

where 𝑁 is the whole number of predictions in the test set, while 𝒰𝐹
and �̂�𝐹 represent the measured and predicted future wave elevations
respectively. The metrics are then normalized by the corresponding
significant height to observe the relative errors:

𝑀𝐴𝐸% = 𝑀𝐴𝐸
𝐻𝑠

× 100% (7)

𝑅𝑀𝑆𝐸% = 𝑅𝑀𝑆𝐸
𝐻𝑠

× 100% (8)

3. Results and discussions

To comprehensively analyze the phase-resolved forecasting of 3D
waves, two prediction scenarios, i.e. wave forecasting using upstream
information and local information, are designed. In the first scenario,
the performance of all five methods is thoroughly compared. Then, the
significance of the directional information is verified by the compara-
tive studies. Finally, the impacts of the different lengths of input and
output time horizons are investigated. In the second scenario, using
the local wave information as the input, all five methods are compared
first and then the errors with different output future time horizons are
explored.

3.1. Wave forecasting using upstream information

In this part, wave forecasting using upstream information is investi-
gated. Specifically, the input of models is set as the historical upstream
wave information measured by the gauge array, i.e. WG2, WG5, WG6,
WG7 and WG8, while the target output is the future wave elevation
measured by WG4.

3.1.1. Performance of different methods
Five machine learning methods are trained by the data of all nine

wave conditions under three sea states. That is to say, each model
is designed to learn mapping relationships between input and output
for all nine wave conditions simultaneously instead of training three
different models for three sea states. In these studies, the length of input
points is set as 300 (90 s in full scale) and 85 for output (25.5 s in full
scale).

As shown in Table 4, all ML-based models can perform relatively
well, especially considering the unavoidable noises during the wave
basin experiments. Although the MAE and RMSE have considerable
disparity for different wave conditions, the relative errors, i.e. MAE%
and RMSE% normalized by the significant height, maintain the same
level, demonstrating that the normalized prediction errors are better
metrics for overall performance.

The prediction errors of two RNN models, i.e. GRU and LSTM, are
larger than other methods, whose average RMSE% are about 12.1%.
The reason is that it is still an extremely challenging task for RNNs
to learn dependencies between distant positions, especially for long
input sequences, albeit LSTM and GRU have been specifically optimized
to resolve the short-term memory problem. The results of MLP and
CNN are slightly better than RNN models and have similar error levels,
which are about 11.9% and 12.0% measured by RMSE%.
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Fig. 4. The error distributions of ML-based methods over the whole prediction time domain using upstream historical wave information measured by WG2, WG5, WG6, WG7 and
WG8, where the error for each time step is averaged over all the experimental wave data in the test set. (a)–(i) represent the nine wave conditions.

Fig. 5. The wave elevations measured in experiments (red) and the prediction results by DBNet (blue) during the 7400 s to 7800 s, where the inputs are the upstream historical
wave information measured by WG2, WG5, WG6, WG7 and WG8. (a)–(i) represent the nine wave conditions.
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Fig. 6. The wave elevations measured in experiments (red) and the prediction results by DBNet (blue) during the 7400 s to 7800 s, where the inputs are the upstream historical
wave information measured by WG2, WG7 and WG8. (a)–(i) represent the nine wave conditions.

Fig. 7. The wave elevations measured in experiments (red) and the prediction results by DBNet (blue) during the 7400 s to 7800 s, where the inputs are the upstream historical
wave information measured by WG2. (a)–(i) represent the nine wave conditions.
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Table 4
The prediction errors measured by MAE (m), RMSE (m), MAE% and RMSE% for all methods under nine wave conditions using upstream wave
information. Each method is trained, validated and tested ten times and then the means and standard deviations are reported. Please notice
the MAE and RMSE are transformed to the full scale.

Con. Method MAE RMSE MAE% RMSE%

1

GRU 0.17528 ± 0.00146 0.22353 ± 0.00168 9.348 ± 0.078 11.992 ± 0.090
LSTM 0.16986 ± 0.00166 0.21681 ± 0.00210 9.059 ± 0.089 11.563 ± 0.112
MLP 0.17756 ± 0.00079 0.22590 ± 0.00094 9.470 ± 0.042 12.048 ± 0.050
CNN 0.17587 ± 0.00146 0.22427 ± 0.00172 9.380 ± 0.078 11.961 ± 0.092
DBNet 0.16982 ± 0.00057 0.21704 ± 0.00068 9.057 ± 0.030 11.576 ± 0.036

2

GRU 0.23358 ± 0.00117 0.29686 ± 0.00162 9.160 ± 0.046 11.642 ± 0.063
LSTM 0.23086 ± 0.00172 0.29357 ± 0.00228 9.053 ± 0.068 11.513 ± 0.090
MLP 0.23035 ± 0.00064 0.29246 ± 0.00082 9.033 ± 0.025 11.469 ± 0.032
CNN 0.23611 ± 0.00190 0.29936 ± 0.00225 9.259 ± 0.075 11.740 ± 0.088
DBNet 0.22900 ± 0.00063 0.29079 ± 0.00081 8.980 ± 0.025 11.404 ± 0.032

3

GRU 0.37291 ± 0.00264 0.47972 ± 0.00337 9.323 ± 0.066 11.993 ± 0.084
LSTM 0.38649 ± 0.00574 0.49763 ± 0.00716 9.662 ± 0.143 12.441 ± 0.179
MLP 0.36157 ± 0.00132 0.46534 ± 0.00157 9.039 ± 0.033 11.633 ± 0.039
CNN 0.36894 ± 0.00305 0.47399 ± 0.00369 9.223 ± 0.076 11.850 ± 0.092
DBNet 0.35724 ± 0.00116 0.46019 ± 0.00141 8.931 ± 0.029 11.505 ± 0.035

4

GRU 0.14331 ± 0.00133 0.18155 ± 0.00169 10.237 ± 0.095 12.968 ± 0.120
LSTM 0.13547 ± 0.00177 0.17171 ± 0.00230 9.676 ± 0.126 12.265 ± 0.164
MLP 0.14465 ± 0.00070 0.18350 ± 0.00089 10.322 ± 0.050 13.107 ± 0.064
CNN 0.14141 ± 0.00115 0.17914 ± 0.00140 10.100 ± 0.082 12.796 ± 0.100
DBNet 0.13731 ± 0.00037 0.17408 ± 0.00047 9.808 ± 0.027 12.435 ± 0.033

5

GRU 0.13460 ± 0.00112 0.17076 ± 0.00128 10.159 ± 0.085 12.888 ± 0.096
LSTM 0.12573 ± 0.00143 0.15936 ± 0.00182 9.489 ± 0.108 12.027 ± 0.138
MLP 0.13581 ± 0.00070 0.17061 ± 0.00086 10.250 ± 0.053 12.876 ± 0.065
CNN 0.12979 ± 0.00082 0.16440 ± 0.00098 9.795 ± 0.062 12.408 ± 0.074
DBNet 0.12606 ± 0.00034 0.15976 ± 0.00043 9.514 ± 0.025 12.057 ± 0.032

6

GRU 0.30010 ± 0.00146 0.38391 ± 0.00201 8.892 ± 0.043 11.375 ± 0.059
LSTM 0.30250 ± 0.00277 0.38762 ± 0.00342 8.963 ± 0.082 11.485 ± 0.101
MLP 0.29169 ± 0.00081 0.37382 ± 0.00104 8.643 ± 0.024 11.076 ± 0.031
CNN 0.30098 ± 0.00268 0.38554 ± 0.00312 8.918 ± 0.080 11.423 ± 0.093
DBNet 0.29096 ± 0.00098 0.37358 ± 0.00119 8.621 ± 0.029 11.069 ± 0.035

7

GRU 0.46248 ± 0.00296 0.60028 ± 0.00428 9.685 ± 0.062 12.571 ± 0.090
LSTM 0.48255 ± 0.00936 0.62557 ± 0.01156 10.106 ± 0.196 13.101 ± 0.242
MLP 0.44957 ± 0.00193 0.58447 ± 0.00256 9.415 ± 0.041 12.240 ± 0.054
CNN 0.44456 ± 0.00324 0.57721 ± 0.00383 9.310 ± 0.068 12.088 ± 0.080
DBNet 0.43487 ± 0.00126 0.56505 ± 0.00151 9.107 ± 0.026 11.833 ± 0.032

8

GRU 0.31521 ± 0.00121 0.39941 ± 0.00162 9.552 ± 0.037 12.103 ± 0.049
LSTM 0.31813 ± 0.00171 0.40338 ± 0.00228 9.640 ± 0.052 12.224 ± 0.069
MLP 0.30688 ± 0.00071 0.38868 ± 0.00096 9.299 ± 0.022 11.778 ± 0.029
CNN 0.31537 ± 0.00348 0.39990 ± 0.00447 9.557 ± 0.105 12.118 ± 0.135
DBNet 0.30607 ± 0.00088 0.38793 ± 0.00114 9.275 ± 0.027 11.755 ± 0.035

9

GRU 0.21181 ± 0.00135 0.26933 ± 0.00149 9.209 ± 0.059 11.710 ± 0.065
LSTM 0.20713 ± 0.00148 0.26357 ± 0.00195 9.006 ± 0.064 11.460 ± 0.085
MLP 0.21177 ± 0.00072 0.26821 ± 0.00091 9.207 ± 0.031 11.662 ± 0.040
CNN 0.21464 ± 0.00199 0.27282 ± 0.00237 9.332 ± 0.086 11.862 ± 0.103
DBNet 0.20760 ± 0.00066 0.26401 ± 0.00080 9.026 ± 0.029 11.479 ± 0.035

Avg.

GRU 0.26103 ± 0.00163 0.33393 ± 0.00212 9.435 ± 0.059 12.070 ± 0.076
LSTM 0.26208 ± 0.00307 0.33547 ± 0.00387 9.473 ± 0.111 12.125 ± 0.140
MLP 0.25665 ± 0.00093 0.32811 ± 0.00117 9.277 ± 0.034 11.859 ± 0.042
CNN 0.25863 ± 0.00220 0.33074 ± 0.00265 9.348 ± 0.080 11.954 ± 0.096
DBNet 0.25099 ± 0.00076 0.32138 ± 0.00094 9.072 ± 0.027 11.616 ± 0.034
For the proposed DBNet, as the parallel structure combines the
dvantages of both CNN and MLP, the errors measured by MAE and
MSE are the lowest for all nine wave conditions among five ML-based
ethods. As for the average error, the performance of the DBNet is

bout 0.2% better than the sub-optimal MLP in MAE% and RMSE%.
ost importantly, the developed DBNet is a computational-friendly
odel. It takes only 2772 s to complete the whole training procedure

n a standard desktop with a single Intel Core i7-7700 CPU and 32,
68 MB RAM, while the prediction for a 25.5 s time horizon only costs
.865 s (including the whole data processing and model loading proce-
ure) which obviously meets the real-time requirement. As what most
ctive control systems require is about a 20 s future time horizon [20],
25.5 s prediction is enough for the control-oriented wave elevation

rediction, indicating the huge potential of the proposed DBNet for the
odel predictive control of WECs.
9

In Fig. 4, in order to visually identify the prediction accuracy of
different ML-based wave prediction methods, the error distributions
over the whole prediction time domain, i.e. 85 prediction points for
25.5 s in the real world, are investigated. The RMSE of the prediction
results compared with the experimental values for five ML-based meth-
ods at different time horizons are calculated and visualized, where the
RMSE for each time step is averaged over all the experimental wave
data in the test set. As can be seen, the error distribution tendencies
of all ML-based methods are quite similar for all nine wave conditions.
Specifically, the errors are relatively low and stable for the first 12.0 s,
which experience a gradual growth during 12.0 s to 17.4 s and then
grow rapidly and finally reach the peak at 25.5 s where the error is
about twice that of the initial stage. Such a tendency is related to the
theoretically predictable zone, whose physically meaningful boundaries
can be explained based on the linear theory of wave propagation. To
be specific, in our case, the historical wave information is recorded by
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Fig. 8. The absolute errors of three types of input with different upstream gauges data.
(a) wave condition 1 during 7460 s to 7600 s and (b) wave condition 8 during 7580 s
to 7720 s, where DBNet#1, DBNet#3 and DBNet#5 represent the input from 1, 3 and
5 upstream gauges.

the upstream gauges (i.e. WG2, WG5, WG6, WG7 and WG8). Then,
the beginning and the end of the theoretically predictable zone are
moments when recorded wave components at the upstream gauges
fully reach the downstream gauge (i.e. WG4) and those components
initially leave the downstream gauge, respectively. In other words,
the boundaries are determined respectively by the timings that the
slowest wave passes the downstream gauge at the earliest time and
the fastest wave passes the downstream gauge at the latest time. Thus,
the increased errors in the last period beyond the predictable zone
are reasonable and expected. More analyses about the theoretically
predictable zone can refer to [17,45].

For all nine wave conditions, the proposed DBNet holds the lead
in most of the prediction time horizons, demonstrating the advan-
tage of the DBNet compared with other ML-based methods. Another
superiority of the DBNet is the better prediction performance during
the first 12.0 s, which is especially obvious for wave conditions 1–
3 (Fig. 4(a)–(c)) and wave conditions 7–9 (Fig. 4(g)–(i)). In Fig. 5,
we further illustrate the wave elevations measured in the experiments
and the predicted results by the proposed DBNet during the 7400 s to
7800 s for nine wave conditions. As can be seen, the predicted results
of the DBNet show a high agreement with the experimental data under
all nine wave conditions. Taking wave condition 3 (Fig. 5(c)) as an
example, the wave elevation experiences a dramatic surge at around
7700 s which increases from about −1.5 m to almost 2.5 m directly.
The proposed DBNet successfully tracks this striking change with quite
a high accuracy.

3.1.2. The significance of the directional information
The comparative studies are conducted in this section to investigate

the significance of the directional information in predictions of 3D
waves. Specifically, the directional information is implicit within the
data measured by the pentagonal gauge array (WG2, WG5, WG6, WG7
and WG8). Thus, two additional studies are conducted based on the
proposed DBNet: the input upstream wave information for the former
is measured by WG2, WG7 and WG8, while the latter is only WG2.
10
Fig. 9. The prediction errors measured by MAE and RMSE using upstream wave
information for different lengths of the (a) output time horizon and the (b) input time
horizon.

The quantitative comparison between three input scenarios can be
seen in Table 5. Apparently, the wave data measured by three gauges
contain less directional information than those of five gauges. Thus,
the errors of the DBNet with input measured by three gauges increase
marginally for all wave conditions. As the directional information can
be still extracted from three upstream gauges, the average MAE% and
RMSE% merely witness a slight increase from 9.1% to 9.6% and 11.6%
to 12.3%, respectively. In sharp contrast, when the input becomes the
data only from a single gauge, i.e. without any directional information,
the errors obviously surge to a high level, which increases by more than
4.0% in MAE% and 5.0% in RMSE%.

The prediction results of those two scenarios can be seen in Figs. 6
and 7. With three upstream wave gauges, the DBNet demonstrates a
satisfactory performance which holds a similar accuracy compared with
the prediction with five upstream wave gauges. However, when only a
single upstream gauge is available, the prediction errors dramatically
rise to a very high level, especially for those scenarios with tremendous
changes. For example, the wave emerges a violent fluctuation at about
7460 s in Fig. 7(h). Although the fluctuation trend is correctly captured
and predicted by the model, the prediction accuracy is far from satis-
factory which is more than 1.0 m (30% normalized by the significant
height) measured by MAE. Two cases of absolute errors with three types
of input are visually illustrated in Fig. 8, where black dashed rectangles
mark the typical discrepancies between three circumstances. Clearly,
the error level of only one gauge’s input is significantly higher than the
other two scenarios. By comparison, the error distributions between the
circumstances with three and five gauges’ inputs are quite similar along
the time span, indicating that the directional information is indeed
necessary for the model to extract and reconstruct the features of 3D
waves. From the above studies and comparisons, we can conclude that
directional information plays an important role in the phase-resolved
forecasting of 3D waves.
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Table 5
The prediction errors measured by MAE (m), RMSE (m), MAE% and RMSE% using
different upstream gauges under nine wave conditions. Each method is trained,
validated and tested ten times and then the means are reported. Please notice the
MAE and RMSE are transformed to the full scale.

Con. Gauges MAE RMSE MAE% RMSE%

1
1 0.24981 0.31430 13.323 16.763
3 0.17971 0.23083 9.585 12.311
5 0.16982 0.21704 9.057 11.576

2
1 0.34404 0.43165 13.492 16.927
3 0.24139 0.30837 9.466 12.093
5 0.22900 0.29079 8.980 11.404

3
1 0.50390 0.63715 12.597 15.929
3 0.37912 0.49164 9.478 12.291
5 0.35724 0.46019 8.931 11.505

4
1 0.20476 0.25627 14.626 18.305
3 0.14460 0.18351 10.329 13.108
5 0.13731 0.17408 9.808 12.435

5
1 0.18546 0.23155 13.997 17.476
3 0.13273 0.16899 10.017 12.754
5 0.12606 0.15976 9.514 12.057

6
1 0.43366 0.54544 12.849 16.161
3 0.30599 0.39555 9.066 11.720
5 0.29096 0.37358 8.621 11.069

7
1 0.59221 0.75581 12.402 15.828
3 0.46057 0.60673 9.645 12.706
5 0.43487 0.56505 9.107 11.833

8
1 0.46168 0.58463 13.990 17.716
3 0.31845 0.40610 9.650 12.306
5 0.30607 0.38793 9.275 11.755

9
1 0.31477 0.39539 13.686 17.191
3 0.21823 0.27934 9.488 12.145
5 0.20760 0.26401 9.026 11.479

Avg.
1 0.36559 0.46136 13.214 16.676
3 0.26453 0.34123 9.561 12.334
5 0.25099 0.32138 9.072 11.616

3.1.3. The length of input and output time horizon
Intuitively, the difficulty of phase-resolved wave forecasting will be

positively associated with the length of the output but negatively cor-
related with the length of the input. In this part, the above hypothesis
is explored by quantitative tests. Five output time horizons, i.e. 22.5 s,
24.0 s, 25.5 s, 27.0 s and 28.5 s and five input time horizons, i.e. 130 s,
110 s, 90 s, 70 s and 50 s are compared using the proposed DBNet.

The prediction errors of these settings are reported in Fig. 9. As
can be seen, the errors indeed increase with the extended length of the
prediction time horizon, especially for those longer than 25.5 s. For the
input sequence, the impact of the length is not very obvious, especially
for those longer than 90 s.

3.2. Wave forecasting using local information

In this part, wave forecasting using local information is investigated.
To be specific, the input of models is set as the historical local wave
information measured by WG4 itself, while the target output is the
future wave elevation measured by WG4.

3.2.1. Performance of different methods
Apparently, as the input only contains local wave data without

either directional information or upstream historical wave elevation,
the predictable time horizon is expected to be much shorter than the
scenario with the upstream wave data. Thus, a small prediction time
horizon (4.5 s) is selected in this condition, while the input historical
time horizon is still 90 s.

As shown in Table 6, even though all ML-based methods have
a decent performance, the errors of GRU and LSTM are still more
considerable than others due to the long input sequences. Since the
11
output is a relatively short sequence, the gaps between MLP, CNN
and DBNet are very small, but the proposed DBNet still holds a slim
advantage.

The measured wave elevation and predicted results by the proposed
DBNet during the 7400 s to 7800 s are shown in Fig. 10. As illustrated,
the predictions most often match with the measured wave elevation
(which is used as the reference value). For example, at about 7475 s
in Fig. 10(a), the wave considerably fluctuates from around −1.3 m
to 1.3 m three times, while the proposed DBNet nicely predicts such
striking changes with very small errors. Meanwhile, some differences
exist between peaks in the experiment results and DBNet predictions.
The first reason is that the local wave measured by the WG4 itself
does not contain any direction information. As shown in Section 3.1.2,
the direction information is actually essential for the phase-resolved
prediction of 3D waves. The second factor which undermines prediction
accuracy is the existence of inevitable measurement errors.

3.2.2. The length of output time horizon
This part investigates wave forecasting using local information for

different lengths of future time horizons. Specifically, taking the same
length (90 s) of historical local wave information measured by WG4
as the input, the prediction errors for different output time horizons
including 4.5 s, 5.1 s and 6.0 s are explored.

As shown in Fig. 11, the errors obviously enlarge with the increase
of the prediction time horizons. For example, when predicting future
6.0 s wave elevation, the RMSE increases more than 20% compared
with the 4.5 s time horizon, indicating the limited predictable future
time horizon using local wave information.

3.3. Ablation study about the hyper-parameters

In this part, the ablation study about the hyper-parameters of differ-
ent machine learning methods used in our work is conducted. For the
ablation study, the input is set as the 90 s historical wave information
measured by the upstream gauges and the output is the 25.5 s future
downstream wave elevation. All methods are trained and tested ten
times and the average MAE and RMSE are reported in Fig. 12. To
investigate the effect of the number of convolutional layers, we add
a CBR and delete a CBR in the DBNet and the CNN, respectively. As
seen in Fig. 12, either adding a CBR (DBNet1 and CNN1) or deleting a
CBR (DBNet2 and CNN2) can lead to a marginal decrease in accuracy.
For MLP, the output sizes of the first two layers are set as (128, 64)
to construct MLP1 and (512, 256) to build MLP2. However, both of
those two modifications would weaken the performance. As to LSTM
and GRU, the number and size of the hidden layer for LSTM1 and
GRU1 are set as 1 and 256, while LSTM2 and GRU2 are 2 and 128.
The results demonstrate that the increase in the size of the hidden layer
would slightly increase errors, while errors would obviously rise with
the increase in the number of hidden layers. Based on this ablation
study, the final hyper-parameters used in this work are obtained which
are reported in Section 2.3.

3.4. Discussion

It is worth mentioning that the phase-resolved forecasting of 3D
waves based on local wave information only requires the local wave
measurement which is usually directly available, while the prediction
based on the upstream wave information, as investigated in Section 3.1,
requires additional upstream wave measurement. However, the local
wave data can only meet the very short-term wave prediction require-
ment within 5 s which is far from the standard of control-oriented
wave forecasting (at least 20 s future wave elevation [20]). By contrast,
although the measurement process is more complicated and expen-
sive (at least three gauges installed on the upstream), the upstream
information can be used for control-oriented wave forecasting. Thus,
these two kinds of formulations have their corresponding advantages
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Table 6
The prediction errors measured by MAE (m), RMSE (m), MAE% and RMSE% for all methods under nine wave conditions using local wave
information. Each method is trained, validated and tested ten times and then the means and standard deviations are reported. Note that the
MAE and RMSE are transformed to the full scale.

Con. Methods MAE RMSE MAE% RMSE%

1

GRU 0.16417 ± 0.00049 0.22038 ± 0.00061 8.755 ± 0.026 11.754 ± 0.033
LSTM 0.15601 ± 0.00134 0.21236 ± 0.00197 8.320 ± 0.071 11.326 ± 0.105
MLP 0.15957 ± 0.00072 0.21562 ± 0.00111 8.510 ± 0.039 11.500 ± 0.059
CNN 0.15755 ± 0.00282 0.21580 ± 0.00318 8.403 ± 0.150 11.510 ± 0.170
DBNet 0.15673 ± 0.00226 0.21484 ± 0.00263 8.359 ± 0.120 11.458 ± 0.140

2

GRU 0.21852 ± 0.00151 0.29513 ± 0.00203 8.569 ± 0.059 11.574 ± 0.080
LSTM 0.21212 ± 0.00226 0.28839 ± 0.00279 8.319 ± 0.089 11.309 ± 0.110
MLP 0.20889 ± 0.00111 0.28459 ± 0.00145 8.192 ± 0.043 11.160 ± 0.057
CNN 0.21098 ± 0.00380 0.28875 ± 0.00421 8.274 ± 0.149 11.324 ± 0.165
DBNet 0.20985 ± 0.00298 0.28753 ± 0.00345 8.230 ± 0.117 11.276 ± 0.135

3

GRU 0.36341 ± 0.00421 0.48700 ± 0.00547 9.085 ± 0.105 12.175 ± 0.137
LSTM 0.36377 ± 0.00573 0.48608 ± 0.00674 9.094 ± 0.143 12.152 ± 0.168
MLP 0.34212 ± 0.00181 0.46200 ± 0.00191 8.553 ± 0.045 11.550 ± 0.048
CNN 0.33802 ± 0.00563 0.45751 ± 0.00542 8.450 ± 0.141 11.438 ± 0.135
DBNet 0.33643 ± 0.00412 0.45566 ± 0.00429 8.411 ± 0.103 11.392 ± 0.107

4

GRU 0.12599 ± 0.00076 0.17020 ± 0.00115 8.999 ± 0.054 12.157 ± 0.082
LSTM 0.11840 ± 0.00191 0.16333 ± 0.00250 8.457 ± 0.136 11.666 ± 0.179
MLP 0.12761 ± 0.00092 0.17365 ± 0.00145 9.115 ± 0.066 12.404 ± 0.104
CNN 0.12533 ± 0.00246 0.17302 ± 0.00282 8.952 ± 0.176 12.359 ± 0.201
DBNet 0.12473 ± 0.00213 0.17237 ± 0.00251 8.909 ± 0.152 12.312 ± 0.179

5

GRU 0.12339 ± 0.00052 0.16616 ± 0.00092 9.313 ± 0.039 12.540 ± 0.070
LSTM 0.11541 ± 0.00210 0.15833 ± 0.00267 8.710 ± 0.158 11.950 ± 0.201
MLP 0.12472 ± 0.00092 0.16894 ± 0.00136 9.413 ± 0.069 12.750 ± 0.103
CNN 0.12085 ± 0.00248 0.16638 ± 0.00276 9.121 ± 0.187 12.557 ± 0.209
DBNet 0.12040 ± 0.00211 0.16587 ± 0.00245 9.087 ± 0.159 12.518 ± 0.185

6

GRU 0.29478 ± 0.00316 0.39612 ± 0.00384 8.734 ± 0.094 11.737 ± 0.114
LSTM 0.29204 ± 0.00338 0.39352 ± 0.00392 8.653 ± 0.100 11.660 ± 0.116
MLP 0.28053 ± 0.00145 0.38047 ± 0.00161 8.312 ± 0.043 11.273 ± 0.048
CNN 0.27810 ± 0.00495 0.37777 ± 0.00507 8.240 ± 0.147 11.193 ± 0.150
DBNet 0.27683 ± 0.00374 0.37640 ± 0.00403 8.202 ± 0.111 11.153 ± 0.119

7

GRU 0.45898 ± 0.00707 0.60425 ± 0.00891 9.612 ± 0.148 12.654 ± 0.187
LSTM 0.47510 ± 0.00952 0.62322 ± 0.01080 9.950 ± 0.199 13.052 ± 0.226
MLP 0.43218 ± 0.00255 0.57684 ± 0.00299 9.051 ± 0.053 12.081 ± 0.063
CNN 0.42723 ± 0.00658 0.57535 ± 0.00552 8.947 ± 0.138 12.049 ± 0.116
DBNet 0.42557 ± 0.00442 0.57300 ± 0.00404 8.913 ± 0.093 12.000 ± 0.085

8

GRU 0.29070 ± 0.00245 0.39550 ± 0.00357 8.809 ± 0.074 11.985 ± 0.108
LSTM 0.28752 ± 0.00329 0.39208 ± 0.00407 8.713 ± 0.100 11.881 ± 0.123
MLP 0.27744 ± 0.00151 0.38202 ± 0.00192 8.407 ± 0.046 11.576 ± 0.058
CNN 0.27993 ± 0.00517 0.38556 ± 0.00579 8.483 ± 0.157 11.684 ± 0.176
DBNet 0.27899 ± 0.00348 0.38477 ± 0.00419 8.454 ± 0.105 11.660 ± 0.127

9

GRU 0.19582 ± 0.00074 0.26490 ± 0.00114 8.514 ± 0.032 11.517 ± 0.050
LSTM 0.18822 ± 0.00166 0.25686 ± 0.00222 8.184 ± 0.072 11.168 ± 0.096
MLP 0.18857 ± 0.00097 0.25661 ± 0.00133 8.199 ± 0.042 11.157 ± 0.058
CNN 0.19031 ± 0.00327 0.26062 ± 0.00365 8.274 ± 0.142 11.331 ± 0.159
DBNet 0.18940 ± 0.00256 0.25950 ± 0.00302 8.235 ± 0.111 11.283 ± 0.131

Avg.

GRU 0.24842 ± 0.00232 0.33329 ± 0.00307 8.979 ± 0.084 12.047 ± 0.111
LSTM 0.24540 ± 0.00347 0.33046 ± 0.00419 8.870 ± 0.125 11.944 ± 0.151
MLP 0.23796 ± 0.00133 0.32231 ± 0.00168 8.601 ± 0.048 11.650 ± 0.061
CNN 0.23648 ± 0.00413 0.32231 ± 0.00427 8.547 ± 0.149 11.650 ± 0.154
DBNet 0.23544 ± 0.00309 0.32110 ± 0.00340 8.510 ± 0.112 11.606 ± 0.123
and disadvantages. Therefore, they will target different application
scenarios according to the specific needs. Based on the experiments
conducted in this paper, the main findings are summarized as:

(1) The ML methods can achieve the real-time deterministic fore-
casting of 3D waves (with a time horizon of more than 20 s)
based on the historical upstream wave information measured by
the gauge array. The forecasting time horizon is sufficient to
enable preview-based control of WECs.

(2) The study shows that the directional wave information captured
by the upstream wave gauge array is necessary for achieving
accurate wave forecasting. Also, the errors of phase-resolved
wave forecasting are positively associated with the length of the
output and negatively correlated with the length of the input.
12
(3) The results also demonstrate that with the local historical infor-
mation (which can be obtained more easily compared with the
directional upstream information) as the input, the ML meth-
ods can achieve very short-term wave forecasting (i.e. 4.5 s)
accurately.

4. Conclusions

To the best of our knowledge, this work investigated, for the first
time, the phase-resolved real-time prediction of 3D waves based on ML
and wave tank experiments. Two major barriers in phase-resolved wave
prediction, i.e. the generalization of the model to diverse sea states and
the deterministic prediction of 3D waves, were both resolved. Specifi-
cally, the experimental results demonstrated that the set of ML models
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Fig. 10. The wave elevations measured in experiments (red) and the prediction results by DBNet (blue) during the 7400 s to 7800 s, where the inputs are the local historical
wave information measured by WG4. (a)–(i) represent the nine wave conditions.
Fig. 11. The prediction errors measured by MAE and RMSE using local wave
information for different lengths of the output time horizon.

developed in this paper was effective for different wave conditions and
sea states without retraining multiple times. In particular, the proposed
DBNet showed better performance than other ML methods.

The preview-based hydrodynamic control is a very important and
effective strategy to improve the power generation of WECs [7] signif-
icantly. However, as a non-causal optimal control problem, forecasting
for future wave elevations with at least a 20 s time horizon is normally
required for those WEC controllers [20]. Thus, the machine learning
model proposed in this work, which can achieve the control-oriented
phase-resolved prediction of 3D waves for multiple sea states in real-
time, is greatly useful to enable the MPC approaches to enhance the
energy conversion efficiency of WECs. Our future works may involve
the investigation of more sea states, the validation of the model to full-
scale wave data measured in real-world ocean sites, and the application
of the proposed model for WEC controller optimization.
13
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