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A B S T R A C T

The spatiotemporal flow field in a wind farm determines the wind turbines’ energy production and structural
fatigue. However, it is not obtainable by the current measurement, modeling, and prediction tools in wind
industry. Here we propose a novel data and knowledge fusion approach to create the first digital twin for
onshore/offshore wind farm flow system, which can predict the in situ spatiotemporal wind field covering
the entire wind farm. The digital twin is developed by integrating the Lidar measurements, the Navier–Stokes
equations, and the turbine modeling using actuator disk method, via physics-informed neural networks. The
design enables the seamless integration of Lidar measurements and turbine operating data for real-time flow
characterization, and the fusion of flow physics for retrieving unmeasured wind field information. It thus
addresses the limitations of existing wind prediction approaches based on supervised machine learning, which
cannot achieve such prediction because the training targets are not available. Case studies of a wind farm
under typical operating scenarios (i.e. a greedy case, a wake-steering case, and a partially-operating case) are
carried out using high-fidelity numerical experiments, and the results show that the developed digital twin
achieves very accurate mirroring of the physical wind farm, capturing detailed flow features such as wake
interaction and wake meandering. The prediction error for the flow fields, on average, is just 4.7% of the
value range. With the accurate flow field information predicted, the digital twin is expected to enable brand
new research across wind farm lifecycle including monitoring, control, and load assessment.
1. Introduction

Wind power plays a key role in the global shift to clean growth.
The global wind power installation has surpassed 837 GW at the
end of 2021, while sustained and accelerated growth of wind power,
especially offshore wind power, is expected in the coming decades [1].
On the other hand, the recent development of sensors, heterogeneous
computing, artificial intelligence (AI), and cloud technology brings vital
opportunities for the digital revolution of wind industry in the era of
Industry 4.0. Digital twin (DT) [2], the digital mirroring of the physical
system in the virtual space, has seen great successes in other physical
and engineering systems [3], such as aviation [4], manufacturing [5],
and energy [6]. It is also of great interest to wind industry. A wind
farm DT, which can provide the digital mirroring of the real-time
spatiotemporal wind field covering the entire wind energy site during
the whole lifecycle of wind farm, can bring brand new opportunities for
all the stages of wind farm development, including wind assessment [7–
9], planning [10], turbine-level control [11,12], farm-level control [13–
16], maintenance [17,18], repowering [19], and grid integration [20].

The key areas that will benefit from the creation of a wind farm flow
DT include: (1) Wind resource assessment. The uncertainty of the inter-
mittent wind poses great challenges in assessing the potential of a wind
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energy site e.g. the annual power production, the operation and main-
tenance (O&M) costs, and the turbine lifespan. The accurate assessment
of wind resource [7–9] has a great impact on the decision-making
process of wind energy planning and construction. (2) Wind turbine &
farm control. The wind velocity field in real-world wind farms is chaotic
and shows strong spatiotemporal variability, and the wind turbine
wake effects have a great impact on the overall power production of
a wind plant [13,14] and also the performance of the neighboring
farms [10,19]. The accurate quantification of the spatiotemporal wind
field information (including both the freestream turbulent flows and
the wake flows) is therefore of great importance for the control of
wind turbines [11,12] and wind farms [15,16], to increase the energy
capture efficiency and mitigate the structural load. (3) Wind energy
site monitoring. The real-time monitoring of wind farms is crucial for
the prevention of extreme events, the reduction of structural failures,
and the scheduling of turbine maintenance [17,18]. (4) Wind speed
prediction. The accurate prediction of wind speed [21,22], thus wind
power via power curves, is important in assisting grid integration [20],
to stabilize the electricity grid and increase its resilience. All these areas
require the accurate characterization, quantification, and understand-
ing of the underlying flow system i.e. the spatiotemporal wind flows in
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Nomenclature

Abbreviations

AI Artificial Intelligence
CFD Computational Fluid Dynamics
DL Deep Learning
DT Digital Twin
LES Large Eddy Simulation
Lidar Light detection and ranging
LoS Line-of-Sight
ML Machine Learning
MSE Mean Squared Error
NN Neural Network
NREL National Renewable Energy Laboratory
NS Navier–Stokes
O&M Operation and Maintenance
PIV Particle Image Velocimetry
RANS Reynolds-Averaged Navier–Stokes
RMSE Root Mean Square Error
SCADA Supervisory Control and Data Acquisition
SCRTP Scientific Computing Research Technology

Platform
SOWFA Simulator fOr Wind Farm Applications

Symbols

𝐷 The turbine rotor diameter
𝑑𝜇 The data point measured by Lidar
𝑒𝑑𝑖𝑣 The loss term derived by the continuity

equation
𝑒𝑢 The loss term derived by the 𝑥 momentum

equation
𝑒𝑣 The loss term derived by the 𝑦 momentum

equation
𝑒𝑢 The loss term derived by the 𝑥 momentum

equation with the actuator force term
𝑒𝑣 The loss term derived by the 𝑦 momentum

equation with the actuator force term
𝑓 The actuator force
𝐿 The total loss
𝐿𝐿𝑖𝑑𝑎𝑟 The loss derived from the Lidar module
𝐿𝑁𝑆 The loss derived from the NS module
𝐿𝑇 𝑢𝑟𝑏 The loss derived from the turbine module
𝒩 The deep neural network model
𝑁𝑎𝑑 The number of elements in the actuator

disk
𝑁𝑛𝑠 The number of test points fed into the NS

module
𝑁𝑇 𝑢𝑟𝑏 The number of test points fed into the

turbine module
𝑁𝑌 The number of points for calculating effec-

tive wind speed
𝑁𝜇 The number of Lidar data points
𝑝 The static pressure
𝑢 The streamwise wind speed
𝑈𝑒𝑓𝑓 The effective wind speed

the whole wind energy site. However, what is happening in real-world
scenarios remains largely unknown with the current technologies. This
lack of spatiotemporal wind information needs urgent remedies in order
2

𝑣 The spanwise wind speed
𝑊 The trainable weights
𝛾 The turbine yaw angle
𝜖 The smoothing parameter of the Gaussian

kernel
𝜃 The Lidar beam’s azimuthal angle

to bring the next technological breakthroughs in these fields. It becomes
even more crucial with the current trend in moving towards larger
turbine rotors, where the wind varies more significantly in the whole
rotor swept area, and towards deeper water sites, where the wind
becomes more volatile and shows stronger spatiotemporal variability.
Therefore, this work aims to develop a wind farm DT system, i.e. a
model that can predict the in situ spatiotemporal wind flows across
the whole wind energy site based on real-time measurements and flow
physics.

The main challenge in establishing such a DT for wind farm flow
system lies in, on the one hand, the lack of experimental techniques
for measuring the real-time wind field covering the entire utility-scale
wind farm site, and on the other hand, the complexity of the underlying
physical system, i.e. the multiple scales in space and time, the strong
nonlinearity, and the large degrees of freedom. The flow field measure-
ments for wind farm wakes, both in scaled wind tunnel experiments and
in utility-scale real-world wind energy sites, have been under intense
investigations for many years [23,24]. For wind tunnel experiments,
detailed measurements can be carried out using particle image ve-
locimetry (PIV) equipment under controlled inflows [25]. They are of
great value for the understanding of wind farm flow physics and the
validations of wind farm models and control approaches. However,
they cannot reflect the real-time flow fields in real-world conditions
quantitatively. Moreover, the scaling issues for tunnel experiments
also pose great challenges for comparison with full-scale wind farm
flows. To provide full-scale measurements of utility-scale wind farms,
numerous measurement campaigns have been carried out in the past.
Earlier works mainly rely on the SCADA system for inflow and wake
measurements [26,27]. Such measurements can last for a long time pe-
riod (e.g. a few months or years). However, in terms of data types, the
SCADA system can only provide point characterization at the installed
locations but not the field characterization covering the spatial domain.
Recently, with the advancements of remote sensing technologies, wind
Lidars [28,29] were deployed in more and more measurement cam-
paigns, aiming at providing up-to-date flow measurements for modeling
and control communities. For example, in [30], Lidar measurements
at various atmospheric conditions and wind directions were carried
out at a wind farm site in North Texas. Along with the SCADA data,
the wake-induced power losses were investigated in detail. In [31],
measurement campaign at a complex terrain wind farm was carried out
using two wind Lidars and the SCADA system. Then the measurement
data was used for analyzing both wake and terrain effects. In [32],
Lidar measurements of wind turbine wakes were obtained using the
Windscanner system [33] and the Lidar data was then used to verify
wake boundary identification approaches. Although Lidars can measure
flow information that is spatially richer than the SCADA system, only
scattered, sparse measurements can be obtained at one time instant.
The field characterization was thus only obtained via averaging over
the time period with the assumption of static flows in these studies.
The unsteady flow characteristics were therefore lost in the averaging
process. In summary, with current experimental techniques, the full
spatiotemporal flow field at utility scale cannot be obtained via direct
measurement.

As for the current wind modeling and prediction approaches, in-

cluding the numerical, analytical, and big data-driven approaches, they
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cannot achieve the prediction of the in situ spatiotemporal flow fields
for wind farms either, as described below.

(1) Numerical approaches, including Reynolds-averaged Navier–
Stokes (RANS) and large eddy simulations (LES), have been developed
in the literature [34] to simulate the wakes generated by wind tur-
bines [35,36]. However, these approaches, on the one hand, are compu-
tationally expensive where the latest developments are moving towards
using exascale computing resources [37], and on the other hand, aim at
the standalone simulations of fluid systems without the time-dependant
scattered information from real-world sensors as input. Therefore, with
these approaches, the real-time correspondence between the simulated
and the real-world wind farm flow fields cannot be established.

(2) Analytical approaches [38] have also been developed with the
understanding of the flow phenomena as the basis. However, these
models [39–41] are of low fidelity, i.e. they are designed to capture the
overall flow features and only a small number of degrees of freedom can
be calibrated against real-world conditions. Thus they cannot capture
the detailed spatiotemporal flow features. In [42], a comprehensive
evaluation of nine analytical wake models was carried out and the re-
sults showed that there were clear discrepancies between the predicted
wake effects and the reference data. Their low fidelity thus makes them
not suitable for the purpose of establishing DTs which require the high-
fidelity modeling of the physical system [4] in order to guarantee that
the digital asset is able to mirror the real-time state of the physical
asset.

(3) Data-driven approaches have been attracting attention recently
in wind modeling and prediction [43–45]. These approaches range
from simple machine learning (ML) methods [46,47] to specifically-
designed deep learning (DL) models to achieve better performance in
data mining [48]. The latest developments in DL for wind predictions
include the use of transformer neural networks integrated with spa-
tiotemporal correlations [49], the combination of transformer model
with wavelet transform [50], Bayesian deep learning approach for un-
certainty quantification [51], and multi-modal learning with abnormal
data detection capability via stacking DL model [52]. However, these
state-of-the-art DL approaches are designed to learn only from data. As
the goal of developing a wind farm DT is to predict the full field over
the entire farm site with only sparse scattered sensor measurements
available, it is thus infeasible to achieve this using these supervised
learning approaches.

Here we propose a novel data and knowledge fusion approach to
create the first DT for wind farm flow system, where measurement
data is used to provide essential information about the real-time flow
state and the dynamics not in the data is rediscovered by the flow
physics. Specifically, the DT integrates the sparse line-of-sight (LoS)
measurements from commercially available Lidar devices [53], Navier–
Stokes (NS) equations for the underlying physics of the wind farm wake
flows, and actuator disk representations of rotors [54,55], based on
physics-informed deep learning [56,57], a sub-field of machine learning
just emerging but already seeing exciting successes [58–60]. Its use in
wind energy research was introduced in [61,62] where the incoming
wind in front of a single wind turbine was studied, while this work
focuses on the entire wind farm with wake interactions. The DT in
this work can take advantage of deep learning model’s capability in
handling systems with extreme complexity, strong nonlinearity, and
high dimensionality, while making the most use of measurements and
physics that are realistically available from the current wind technolo-
gies. By fusing data and physics into deep learning, the DT is trained to
retrieve the wind speed vector field in the entire wind farm site, based
on only sparse measurements.

A set of simulation cases are carried out to demonstrate the devel-
oped DT, where SOWFA [63] is used as the platform for numerical
experiments [64,65]. From the simulations, the sparse Lidar data and
the spatiotemporal wind field in the entire domain are recorded, where
the latter only serves as the ground truth (not as training data) to vali-
3

date the DT’s accuracy. The prediction results show that the developed
DT is accurate for all the studied conditions, i.e. a greedy case, a wake-
steering case, and a partially-operating case. Specifically, the full fields
covering the wind farm site are predicted very accurately, showing
that the digital mirroring of real-world wind farm from the physical
space to the virtual space is established. Then the rotor-effective speed
along the turbines’ centerlines and the instantaneous speed profiles are
extracted from the DT. Very good agreement with the true values is
observed. Further analysis shows that the DT is able to capture the
in situ unsteady flow features accurately, including wake deficit, wake
deflection, wake recovery, and more importantly, wake meandering.
Our contributions are listed below.

(1) A first digital twin for wind farm flow system is devel-
oped in this work, which can serve as the backbone of the
next-generation wind technology throughout the lifecycle of
wind farms. It achieves the prediction of the in situ spatiotem-
poral wind farm flow field for the first time, therefore paving
ways for brand new research in the areas of DT-enabled wind
farm monitoring, wind farm control, load assessment, mainte-
nance scheduling, and power forecasting. The comparison of the
developed digital twin with existing numerical, analytical, and
data-centric approaches is summarized in Table 1.

(2) A data and knowledge fusion approach is proposed to es-
tablish the wind farm DT, which integrates, in a unified
manner, the Lidar measurements, the wind aerodynamics
described by Navier–Stokes equations, and the turbine mod-
eling using actuator disk method, via physics-informed deep
learning technique. This data-knowledge-fusion approach also
provides important inspirations for developing digital twins for
other physical systems (such as wave and tidal energy systems).

(3) The wind farm DT is validated through a set of high-fidelity
numerical experiments, including a greedy case, a wake-
steering case, and a partially-operating case. For all the
considered conditions, the full fields covering the wind farm site
are all predicted accurately.

In the following parts, Section 2 introduces the DT methodology,
Section 3 gives the numerical results, and Section 4 concludes the
paper.

2. Methodology

The data and knowledge fusion approach for establishing the wind
farm DT is presented in this section, where the overall framework
is described first, then a Lidar module (which handles the sensor
measurements), an NS module (which considers the wind aerodynamics
through NS equations), and a turbine module (which handles the tur-
bine measurements through turbine modeling) are described in detail.
The overall method is demonstrated in Fig. 1.

2.1. Data and knowledge fusion framework

The wind farm DT is developed by integrating the Lidar measure-
ments and the physical knowledge seamlessly via the physics-informed
learning technique. First, a neural network (NN) is devised to approxi-
mate the wind farm flow state. The deep NN, denoted as 𝒩 , is expressed
as

[𝑢, 𝑣, 𝑝] = 𝒩 ([𝑥, 𝑦, 𝑡];𝑊 ) (1)

where [𝑥, 𝑦] represents the spatial coordinate in 𝑥 and 𝑦 directions in
the Cartesian system, 𝑡 represents the temporal coordinate, 𝑊 is the
trainable weights, and [𝑢, 𝑣, 𝑝] represents the speed along 𝑥 and 𝑦 axes
and static pressure. Given any spatial coordinate [𝑥∗, 𝑦∗] in the wind
farm site and the temporal coordinate 𝑡∗ as the NN input, the NN
returns wind speed and static pressure [𝑢∗, 𝑣∗, 𝑝∗] at this location and

this time instant as the NN output.
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Table 1
The comparisons of the developed digital twin with numerical simulations, analytical models, and data-centric approaches.
Type Analytical

models
Numerical
simulations

Data-driven methods The digital twin in this work

Based on Physical
observations

NS equations +
turbine modeling

Measurements Measurements + NS equations +
turbine modeling

Approach Flow analysis CFD Machine learning Physics-informed machine
learning

Flow details No Yes No Yes

Digital mirroring
of flow fields

No No No Yes
Fig. 1. The proposed data and knowledge fusion framework for establishing the wind farm digital twin (wind farm photo by Christian Steiness).
However, the current sensor technology in wind industry cannot
measure the full field in the entire wind energy site. Supervised ma-
chine learning is therefore infeasible for the training of 𝒩 . Moreover,
due to the complexity (i.e. the multiple scales and the strong non-
linearity) of the wind farm flow system, a very deep NN structure
and a very large degree of freedom are typically required for 𝒩 . This
makes its training even more challenging. To tackle these challenges,
the approach proposed in this paper combines various realistically-
available wind and turbine measurements with physical knowledge of
the flow dynamics. By incorporating flow physics, the training of the
resulting machine learning model does not need the full field data while
it can predict the full field after training. Specifically, different modules
are developed to handle different sources of data and physics, and then
the training of 𝒩 aims at minimizing the loss function 𝐿 which is
defined as

𝐿 = 𝐿𝐿𝑖𝑑𝑎𝑟 + 𝐿𝑁𝑆 + 𝐿𝑇 𝑢𝑟𝑏. (2)

Here 𝐿𝐿𝑖𝑑𝑎𝑟, which is the loss derived from the Lidar module, is used
to guide the deep NN model to match the Lidar measurements. 𝐿𝑁𝑆 ,
which is the loss derived from the NS module, is used to guide the deep
NN model to satisfy the physical constraints (such as the conservation
of mass and momentum) imposed by the NS equations. And 𝐿𝑇 𝑢𝑟𝑏,
which is the loss derived from the turbine module, is used to guide
the deep NN to learn from rotors’ impact based on turbine parameters
(such as turbine locations, yaw angles, and real-time measurements of
rotor thrust). The details of each module are given below.

2.2. Lidar module

Turbine-mounted Lidar device provides limited yet valuable real-
time wind information in front of the wind turbines. Here it plays the
4

role of informing the DT regarding real-time flow states of the wind
farm.

The Lidar configurations in this work are designed based on the
specifications of the turbine-mounted Lidar devices developed by ZXL-
idars [53]. The Lidar range is set as 550 m. The interval is 30 m and
there are 17 measurement ranges. It is further configured to scan in the
hub-height plane with an opening angle of 42 degree and a resolution
of 3.5 degree in the azimuthal direction, resulting in a total number
of 13 locations for a whole scanning cycle. This is specified based
on the TM-300 [53]. Also, due to the limitation of the commercially
available devices, the Lidar considered in this work is set to measure
one azimuthal location every 0.5 s which results in a period of 6.5 s
for a scanning cycle. The Lidar measurement is therefore very low
resolution compared to the dynamic wind farm flow system.

Each data sample of the LoS wind speed measurement is hereby
denoted as

𝑑𝜇 = [𝑥𝜇 , 𝑦𝜇 , 𝑡𝜇 , 𝜃𝜇 , 𝑢𝜇] (3)

where 𝑢𝜇 represents the LoS measurement signal at the location [𝑥𝜇 , 𝑦𝜇]
and the time instant 𝑡𝜇 with the Lidar beam’s azimuthal angle as 𝜃𝜇 . The
designed Lidar system can provide a dataset for 34 locations per second.

A Lidar module is then developed to make use of the Lidar dataset in
the DT. To achieve this, an observation layer is added on top of the deep
NN 𝒩 , as illustrated in Fig. 1. This layer’s input is the concatenation of
the output of the deep NN 𝒩 and beam’s azimuthal angle. The output
is the LoS wind speed. It is calculated as

𝑢𝐿𝑜𝑆 = 𝒩 ([𝑥, 𝑦, 𝑡])[1] cos(𝜃) −𝒩 ([𝑥, 𝑦, 𝑡])[2] sin(𝜃) (4)

where 𝜃 is the azimuthal angle of the Lidar beam. 𝐿𝐿𝑖𝑑𝑎𝑟 is then defined
by

𝐿 = MSE(𝑈𝐿𝑜𝑆 − 𝑈𝜇) (5)
𝐿𝑖𝑑𝑎𝑟
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where MSE represents mean squared error, 𝑈𝐿𝑜𝑆 = {𝑢𝐿𝑜𝑆 ([𝑥𝜇𝑖 , 𝑦
𝜇
𝑖 , 𝑡

𝜇
𝑖 ,

𝜃𝜇𝑖 ]), 0 < 𝑖 < 1 +𝑁𝜇} is the Lidar module output, and 𝑈𝜇 = {𝑢𝜇𝑖 , 0 < 𝑖 <
1 +𝑁𝜇} is Lidar measurements.

2.3. NS module

The Lidar module only involves the Lidar measurement locations,
which are very sparse both in time and in space. For most part of the
domain in the wind farm, no measurements are available. To rediscover
the wind information at these locations not measured by Lidar, it is
necessary to take the flow physics into account. In this paper, this is
achieved by deriving an NS module based on the deep NN 𝒩 to enforce
the deep NN-predicted flow field to satisfy the underlying physics
described by the NS equations.

First, the NS equations are reformulated to obtain 𝑒𝑢, 𝑒𝑣, and 𝑒𝑑𝑖𝑣
as defined in the blue part of Fig. 1). Then the NS module is derived
o calculate the functional loss term 𝑒𝑢, 𝑒𝑣 and 𝑒𝑑𝑖𝑣. Specifically, 𝑒𝑢, 𝑒𝑣
nd 𝑒𝑑𝑖𝑣 are derived using gradients of the mapping 𝒩 . This is achieved
y using automatic differentiation for computational graphs, which is
idely available in all major machine learning libraries (such as the

f.gradients functionality in Tensorflow). All the gradient terms in 𝑒𝑢,
𝑣 and 𝑒𝑑𝑖𝑣 are obtained in this way based on the deep NN 𝒩 . The
esulting functional loss terms thus have the same input and the same
raining variables as 𝒩 . The loss function 𝐿𝑁𝑆 can be finally obtained
s

𝑁𝑆 = MSE(𝐸𝑢) + MSE(𝐸𝑣) + MSE(𝐸𝑑𝑖𝑣) (6)

where

𝐸𝑢 ={𝑒𝑢([𝑥𝑛𝑠𝑖 , 𝑦𝑛𝑠𝑖 , 𝑡𝑛𝑠𝑖 ]), 0 < 𝑖 < 1 +𝑁𝑛𝑠};

𝐸𝑣 ={𝑒𝑣([𝑥𝑛𝑠𝑖 , 𝑦𝑛𝑠𝑖 , 𝑡𝑛𝑠𝑖 ]), 0 < 𝑖 < 1 +𝑁𝑛𝑠}; (7)
𝐸𝑑𝑖𝑣 ={𝑒𝑑𝑖𝑣([𝑥𝑛𝑠𝑖 , 𝑦𝑛𝑠𝑖 , 𝑡𝑛𝑠𝑖 ]), 0 < 𝑖 < 1 +𝑁𝑛𝑠}

[𝑥𝑛𝑠𝑖 , 𝑦𝑛𝑠𝑖 , 𝑡𝑛𝑠𝑖 ], 0 < 𝑖 < 1+𝑁𝑛𝑠} is randomly sampled from the entire wind
arm site (excluding the domain nearby the turbine rotors). It is at these
ocations and time instants that the physical constraints imposed by NS
quations are enforced.

.4. Turbine module

The flow behind turbine rotors depends greatly on the turbine
perating conditions such as yaw angles, the thrust, etc. The key quan-
ities characterizing the turbine rotors’ impact on the flow field have
een investigated extensively in the context of wake modeling [66,67]
nd control [68,69]. However, the consideration of real-time turbine
nformation in reconstructing the dynamic wind field has not been
nvestigated yet. This section thus focuses on the development of a
urbine module, which first transforms the turbine operating conditions
s physical constraints via turbine modeling, and then integrates the
onstraints into the developed wind farm DT through the loss function
𝑇 𝑢𝑟𝑏.

The turbine modeling in this work follows the actuator disk ap-
roach [54,55]. Here the force exerted by the actuator disks is filtered
y a Gaussian kernel before being applied to the fluid volume. Specifi-
ally, the force on the fluid volume is calculated based on the real-time
urbine thrust as

(𝑥, 𝑦) = −
𝑁𝑎𝑑
∑

𝑖=1

𝑓𝑖
𝜖2𝜋

exp
⎛

⎜

⎜

⎝

−
|𝑥 − 𝑥𝑓𝑖 |

2
+ |𝑦 − 𝑦𝑓𝑖 |

2

𝜖2

⎞

⎟

⎟

⎠

(8)

where [𝑥, 𝑦] represents the location of the fluid volume, 𝑁𝑎𝑑 represents
he total number of the elements in the actuator disk, [𝑥𝑓𝑖 , 𝑦

𝑓
𝑖 ] and

𝑖 represent the location and the actuator force of the 𝑖th discretized
ctuator element, and 𝜖 represents the smoothing parameters of the
aussian kernel. Then the force is projected in 𝑥 and 𝑦 directions as

= 𝑓 cos(𝛾) (9)
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𝑢

nd

𝑣 = 𝑓 sin(𝛾) (10)

where 𝛾 is the yaw angle of each turbine. The functional loss terms
arising from the momentum equations with the volume forces can thus
be obtained as

𝑒𝑢 = 𝑒𝑢 −
𝑓𝑢
𝜌

𝑒𝑣 = 𝑒𝑣 −
𝑓𝑣
𝜌
.

where 𝜌 is the air density. Finally, the loss function that incorporates
the turbine rotors’ impact on the flow field is obtained as

𝐿𝑇 𝑢𝑟𝑏 = MSE(�̃�𝑢) + MSE(�̃�𝑣) + MSE(𝐸𝑑𝑖𝑣) (11)

where

�̃�𝑢 ={𝑒𝑢([𝑥𝑇𝑖 , 𝑦
𝑇
𝑖 , 𝑡

𝑇
𝑖 ]), 0 < 𝑖 < 1 +𝑁𝑇 𝑢𝑟𝑏};

�̃�𝑣 ={𝑒𝑣([𝑥𝑇𝑖 , 𝑦
𝑇
𝑖 , 𝑡

𝑇
𝑖 ]), 0 < 𝑖 < 1 +𝑁𝑇 𝑢𝑟𝑏}; (12)

𝐸𝑑𝑖𝑣 ={𝑒𝑑𝑖𝑣([𝑥𝑇𝑖 , 𝑦
𝑇
𝑖 , 𝑡

𝑇
𝑖 ]), 0 < 𝑖 < 1 +𝑁𝑇 𝑢𝑟𝑏}

{[𝑥𝑇𝑖 , 𝑦
𝑇
𝑖 , 𝑡

𝑇
𝑖 ], 0 < 𝑖 < 1 + 𝑁𝑇 𝑢𝑟𝑏} is a batch of test points randomly

sampled from the domain near the turbine rotors. It is at these locations
and time instants that the modeling of turbines’ impact on the flow field
is taken into account.

2.5. Model construction, training and prediction

By minimizing the loss function 𝐿, the DT learns from the Lidar
measurements, the wind aerodynamics described by NS equations, and
the turbine rotors’ impact on the wind flow simultaneously. In this
work, a large and deep fully-connected NN is constructed for 𝒩 so that
it can capture detailed flow dynamics. The final NN structure is set as 3-
128-128-128-128-128-128-128-128-128-3. The Adam optimizer [70] is
used with a learning rate of 10−3. After training, the spatial coordinates
corresponding to a uniform mesh covering the entire wind farm (e.g. a
12 m × 12 m mesh) are fed directly to the DT to predict the full
spatiotemporal fields, therefore establishing the digital mirroring to the
physical flow system.

3. Results and discussions

The evaluation of the DT is carried out through high-fidelity nu-
merical experiments. In the following parts, the simulation setups are
described first. Then a set of typical wind farm operation scenarios
are investigated, including a greedy case, a wake-steering case, and a
partially-operating case.

3.1. Simulation details

The simulations use a high-fidelity solver called SOWFA, which is
developed by NREL for the scale-resolving simulation of wind farm
wake flows [64,65]. In this section, an example site with six turbines
is investigated, which is illustrated in Fig. 2. The turbine type is
the NREL 5MW and it has a diameter (denoted as 𝐷 hereafter) of
126.4 m. The spanwise spacing is 3𝐷 and the streamwise spacing is
5𝐷. A precursor turbulent atmospheric flow simulation is carried out to
prepare a 10 m/s, southwest wind flow. Then the simulations of wind
farms are carried out under such precursor flow. The computational
domain, as illustrated by Fig. 2 (which shows the top view of the
horizontal plane at the turbine hub height) and Fig. 3 (which shows
the 3D flow domain), extends 3 km in south–north direction, 3 km in
west–east direction, and 1 km in vertical direction. Such a domain size
is set up in order to ensure proper development of the atmospheric
boundary layer flows [71]. For mesh generations, uniform mesh is

used with two-level mesh refinement. As shown in Fig. 2, in the outer
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Fig. 2. The computational domain and the corresponding mesh.

region which covers most of the flow domain, the grid size is set as
12 m × 12 m × 12 m. In the wind turbine wake region, the grid
size is set as 3 m × 3 m × 3 m. And the grid size is set as 6 m
× 6 m × 6 m for the region in-between. The local refinements in
the vertical direction take place at 279 m and 405 m respectively, as
suggested by the work [13]. The grid size of 3 m is set according to
the recommendations by the developers in order to resolve the detailed
flow dynamics in the wake region [13]. The boundary condition is set
by the surface stress and temperature flux model as well as zero normal
velocity for the bottom boundary, and the zero stress and temperature
flux as well as zero normal velocity is set for the top boundary, which
are typical for simulating atmospheric flows [64]. As for the lateral
boundaries, inflow and outflow conditions are imposed for the west
and east boundaries respectively, while the cyclic condition is imposed
for the north and south boundaries. As for the time discretization, the
time step is set as 0.02 s so that the rotor blades’ motion can be well
captured with blade elements moving less than one grid cell per time
step. The simulation is carried out for a period of 700 s for each case.
About 7680 CPU hours are needed for one simulation case based on
the Avon clusters at the University of Warwick. Fig. 2 illustrates an
instantaneous velocity field while Fig. 3 shows a three-dimensional
flow field by the vorticity isosurface. As shown, the large-scale as well
as the small-scale flow structures are all captured very well in the
simulated flow fields, demonstrating the scale-resolving capability of
the numerical experiment platform. From the wind farm simulations,
the first 300 s simulations are discarded, as the wake flow generated
by the wind turbines has not been well established. From the last 400 s
simulations, Lidar measurements are extracted. The Lidar measurement
data, along with the turbine locations, turbine yaw angles and rotor
thrust measurements, is used for the training of the wind farm DT. The
entire flowfields are also recorded. They are assumed unknown during
the training process and only used as the test dataset to evaluate the
accuracy of the developed DT.

3.2. Greedy case

The greedy case, which is the most common scenario in the current
wind industry, is considered first. In this case, the turbine yaw direc-
tion is set as the same as the incoming wind direction, so that each
individual wind turbine extracts most of energy for its own (thus called
greedy).
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Fig. 3. The three-dimensional flow field by the vorticity isosurface.

The DT-predicted full fields over the wind farm site (which corre-
spond to the virtual entity) are compared with the full fields given by
SOWFA (which correspond to the physical entity). Fig. 4(a) and 5(a)
show two example snapshots, and the corresponding unsteady flow
visualization is given in Video 1. Clearly, the DT predicts the dynamic
full fields very accurately, including both the freestream flow and the
flow behind wind turbines. In particular, spatiotemporal variability of
the incoming wind field, wake flows behind wind turbines, and their
downstream propagation, are all captured very well. Furthermore, the
meandering of the flow structures in 𝑦 direction is also captured well,
which can be seen most clearly by the second-column turbines’ far
wake. It is worth mentioning that wake meandering has been widely
studied in the literature due to its large influence on the wind turbine
energy production and structural load [72,73]. However, to date, to the
authors’ knowledge, there are no studies that achieved the in situ full
field reconstruction capturing the unsteady wake meandering based on
measurements. For the first time, the results here demonstrate that it
is possible to achieve this using commercially available Lidar device.

On the other hand, the full field comparisons illustrate the DT is
not capable of capturing the very small-scale flow structures, which
are smoothed out in the predicted flow fields. This is reasonable, as
the only wind measurements used in the developed DT is the Lidar
measurements, which has a very low resolution both in space (the
distance between neighboring measurement points is 30 m) and in time
(the time interval for measuring the same azimuthal location is 6.5 s).
We mention, however, that the inability in capturing very small-scale
flow structure does not undermine the developed DT’s usefulness in
most of the practical scenarios where large-scale flow structures in the
wind are of main interest.

From the DT-predicted wind field, various wind information can
be extracted. Here, to further demonstrate the performance of the de-
veloped DT, the rotor-effective speed along turbine centerlines, which
determines power generation, is examined. It is computed by

𝑈𝑒𝑓𝑓 (𝑥, 𝑡) =
1
𝑁𝑌

𝑁𝑌
∑

𝑖=1
𝑈 (𝑥, 𝑌 + 𝑦𝑖, 𝑡) (13)

where 𝑌 is the lateral coordinate of the turbine location, and {𝑦𝑖, 0 < 𝑖 <
1+𝑁𝑦} covers the interval [−𝐷∕2, 𝐷∕2]. Fig. 4(b-c) and 5(b-c) show the
DT predictions and the ground truth. Figs. 4(b) and 5(b) give the rotor-
effective speed for the first-row wind turbines, and Figs. 4(c) and 5(c)
are for the second-row turbines. As shown, the DT predictions are very
close to their true values. Turbine location is also marked, as shown by
the dotted blue lines in Fig. 4(b, c) and Fig. 5(b, c). Clearly, the turbine
rotors’ impact on the flow is captured by the developed wind farm DT,
where the wake deficit, i.e. the drastic speed decrease due to turbines’
presence, and the wake recovery, i.e. the gradual speed recovery while
the wake develops and mixes with freestream wind flows, are both
predicted accurately. Moreover, as shown by both field visualizations
and effective speeds, the flows at different time instants have clear
quantitative differences. This unsteadiness is captured accurately, as
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Fig. 4. The DT predictions for the greedy case at 𝑡 = 200 s. (a) the full field; (b) the rotor-effective speed for the upper-row turbines; (c) the rotor-effective speed for the lower-row
turbines; (d) the speed profiles.
Fig. 5. The DT predictions for the greedy case at 𝑡 = 400 s. (a) the full field; (b) the rotor-effective speed for the upper-row turbines; (c) the rotor-effective speed for the lower-row
turbines; (d) the speed profiles.
demonstrated by the good match between the DT predictions and the
ground truth at different time instants throughout the time period.

Next, the speed profiles are extracted based on full fields predicted
by the DT. The results are given in Fig. 4(d) and 5(d). As shown, the
speed profiles are predicted very accurately, including the flow details
of the freestream turbulent wind (as shown by the profiles from X =
-4D to X = -1D), the wakes generated by individual turbines (as shown
by the profiles from X = 0D to X = 4D), and the wake-wake interactions
(as shown by the profiles from X = 5D onward). Particularly, the
wake deficit due to the turbine inductions, at X = 0D, X = 5D, and
X = 10D, and the wake recovery that follows, are all captured very
well, such as the development of the wake profiles from ’double-peak’
towards ’single-peak’ shapes and the wake profiles’ expansions along 𝑦
direction. More specifically, wakes behind the second-column turbines
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develop faster than the front turbine wakes, because of the enhanced
mixing due to wake-wake interactions. For example, the’single-peak’
profile is formed at approximately 4D downstream of the front turbine
wakes, while formed at approximately X = 7D which is 2D downstream
of the second-column turbines. In addition, the performance of the
developed DT in capturing the effects of wake meandering is also
clearly demonstrated through these speed profiles. For example, as
shown by the profile at X = 8D in Fig. 4(d), the wake center at the
upper row meanders downward in the spanwise direction at this time
instant (i.e. t = 200s), while at t = 400 s, as shown in Fig. 5(d), the
wake center at the same location meanders upward. To summarize,
a great match between the predicted profiles and the ground truth is
observed, demonstrating clearly the performance of the developed DT
in capturing detailed flow features.
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Fig. 6. The DT predictions for the wake-steering case at 𝑡 = 200 s. (a) the full field; (b) the rotor-effective speed for the upper-row turbines; (c) the rotor-effective speed for the
lower-row turbines; (d) the speed profiles.
Table 2
RMSEs of the DT-predicted full fields for all three cases. Case #1, #2 and #3 represent

the greedy case, the wake-steering case, and the partially-operating case. u and v are
wind components in x and y directions.

Case Quantity Value range RMSE (% of range)

#1 u (m/s) [0.437, 14.1] 0.677 (5.0%)
v (m/s) [−5.42, 5.05] 0.434 (4.1%)

#2 u (m/s) [1.12, 13.8] 0.656 (5.2%)
v (m/s) [−5.61, 4.31] 0.490 (4.9%)

#3 u (m/s) [0.539, 13.6] 0.586 (4.5%)
v (m/s) [−5.31, 5.11] 0.392 (3.8%)

We mention, however, that for the profiles in the near wake region,
there exists a moderate discrepancy between the prediction and the
ground truth. This can be also seen from the error distributions in the
near wake region as shown in Fig. 4(a) and 5(a). This is not unexpected,
because the developed DT incorporates the sparse Lidar measurements,
which are not available in this region, and the actuator disk turbine
model, which has no detailed representations of the turbine blades.
Thus the local impact of the turbine blades in this region is neither
measured nor modeled. In practice, more powerful Lidar devices, along
with advanced structural sensors and more complex turbine modeling
approaches, may be used to accurately predict the flow details in this
region. However, this will bring much more cost to the developed
DT system and greatly reduce its flexibility due to the requirement of
detailed blade information. The present DT system only requires Lidar
measurements, turbine location, turbine yaw angle, and rotor thrust.
Thus it can be easily applied to a general wind farm consisting of
generic wind turbine types. It is also worth mentioning that the far
wake region, where good accuracy is achieved by the developed DT,
is the main region of interest in many applications such as wind farm
monitoring, control, and power forecasting.

Root mean square errors (RMSE) of DT-predicted full fields are
calculated next. They are reported in Table 2 for both u and v compo-
nents. The value ranges of the corresponding wind velocity components
are also given in Table 2. As shown, the RMSE is just 5.0% of the
value range for the streamwise velocity field while it is just 4.1% for
the spanwise velocity field, demonstrating the great accuracy of the
developed DT.
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3.3. Wake-steering case

Wake steering has been investigated recently for the coordinated
control of wind turbines to mitigate the wake effects thus achieving
optimal performance for the overall wind farm [14,16]. This second
case study thus considers the DT’s performance in an optimized yaw
control scenario. In particular, according to the optimization results
reported by Gebraad et al. [14], the turbine yaw angles in this case
are set as 25.15, 39.75, 0.45, 25.85, 39.80, and 0.35 degrees from the
turbine #1 to the turbine #6 respectively (the turbine numbers are
illustrated in Fig. 2).

First, the DT-predicted dynamic full fields are shown in Fig. 6(a)
and 7(a) and in Video 2. As shown, as in the case of greedy wind farm,
the full fields are predicted very accurately for this wake-steering case.
Flow structures such as wake deficit, deflection, and meandering, are
all captured very well by the developed DT.

The rotor-effective speed is then calculated based on full fields
obtained by the DT, which is shown in Fig. 6(b, c) and 7(b, c). As
shown, the results predicted by the DT are very accurate. In particular,
the speed decrease along the centerline is less dramatic in this case than
the greedy case, demonstrating that the wake-steering yaw control is
working as expected (which means, by wake steering, the downstream
turbines now operate in a much more favorable wind condition with
a much higher rotor-effective speed than their greedy counterparts).
The wake-steering effects can also be clearly seen from the speed
profiles, which are shown in Fig. 6(d) and 7(d). The development of
the profiles clearly shows that turbine wakes propagate in the deflected
directions due to the yaw effects, which is successfully captured by the
developed DT. To summarize, the developed DT captures the detailed
flow features accurately in this wake-steering case, similar as in the
greedy case.

We mention that recently wind farm yaw control has been investi-
gated in numerous field test studies and various levels of power capture
improvement were reported, such as the power increase up to 29%
for a downstream turbine [74], a 4% increase in energy production
of the two-turbine case [75], the performance gains of 35% for two-
turbine interactions and up to 16% for three-turbine interactions [76].
However, an in-depth analysis of the quantitative link between the
wake steering and the power generation is hindered by the lack of the in
situ dynamic full field information in real-world wind farms. The case
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Fig. 7. The DT predictions for the wake-steering case at 𝑡 = 400 s. (a) the full field; (b) the rotor-effective speed for the upper-row turbines; (c) the rotor-effective speed for the
lower-row turbines; (d) the speed profiles.
Fig. 8. The DT predictions for the partially-operating case at 𝑡 = 200 s. (a) the full field; (b) the rotor-effective speed for the upper-row turbines; (c) the rotor-effective speed for
the lower-row turbines; (d) the speed profiles.
study here demonstrates that, based on the developed DT, it is possible
to tackle this issue using only commercially-available measurement
devices.

RMSEs of the DT predictions are also given in Table 2 for this wake-
steering case. As shown, similar as in the greedy case, the prediction
errors are very small, demonstrating great accuracy achieved by the
developed DT.

3.4. Partially-operating case

Real-world wind farms are subject to various disruptions such
as wind turbine fault, scheduled maintenance, etc. In such scenario,
parked turbines often co-exist with other operational turbines. The
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third case focuses on such partially-operating scenario. Particularly, the
same wind farm consisting of six greedy turbines is considered, where
the turbine #2 (i.e. the second turbine in the first row) is now in parked
condition.

First, the dynamic full fields are given in Fig. 8(a) and 9(a) and in
Video 3. As in the other two cases, the fields covering the entire wind
farm, including both the inflow and the turbine wake, are predicted
very accurately. Because the turbine #2 is now in parked condition
which does not extract power from the wind, the flow in the first row
has a clearly larger wind speed magnitude than the second row.

Next, Fig. 8(b, c, d) and 9(b, c, d) show the rotor-effective speed
along the centerline and the speed profiles. A good match between
the prediction and the ground truth is observed. The rotor-effective
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Fig. 9. The DT predictions for the partially-operating case at 𝑡 = 400 s. (a) the full field; (b) the rotor-effective speed for the upper-row turbines; (c) the rotor-effective speed for
the lower-row turbines; (d) the speed profiles.
speed in the first row of turbines, as shown in Fig. 8(b) and 9(b),
recovers towards freestream wind speed and reaches about 8 m/s
before decreasing again due to the turbine in the third column, while
the rotor-effective speed in the second row, as shown in Fig. 8(c) and
9(c), is much lower than the first row, due to the momentum extraction
by the turbine at X = 5D. The details of the wake development, such as
the faster recovery of the wake in the first row compared to the second
row, are also captured very well by the developed DT which can be
seen from the speed profiles in Fig. 8(d) and 9(d).

Finally, RMSEs for this case are also reported in Table 2. As in
other cases, great accuracy is obtained for this partially-operating case,
demonstrating the developed DT’s versatility in various scenarios of
practical interest.

3.5. Discussions

The results in this section clearly demonstrate that the proposed
wind farm DT is able to predict the spatiotemporal flow fields covering
the wind farm site at various operating scenarios accurately. From the
traditional machine learning point of view, this is an unsupervised
ML problem. The accurate flow prediction achieved by the DT, in-
cluding the successful characterization of wake interactions and wake
meandering, is very challenging, as this is an ill-posed inverse problem
involving a complex multi-scale nonlinear flow system. The design that
enables the current DT performance lies in the information fusion of the
proposed approach, which includes the Lidar measurements, the tur-
bines’ operational data (i.e. the location, yaw angle, and rotor thrust),
the NS equations characterizing wind aerodynamics, and actuator disk
modeling of the impact of the turbine rotors on the flow fields. All
these data and physical knowledge are fused into a deep, large neural
network model with the capability of approximating complex nonlinear
systems. This allows the consideration of all the available information
with physical consistency when making predictions for new locations
where there are no measurements. Specifically, when making predic-
tions for a new location, the DT implicitly considers the correlations
between the location to be predicted and the data points measured by
the neighboring Lidar based on NS equations, as well as the correlations
between the location to be predicted and the data points measured by
different Lidars based on NS equations with actuator disk modeling.
It is worth mentioning that the explanations of data correlations are
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based on physical intuition instead of rigorous proof, as the whole
deep learning model is trained with all the information simultaneously.
For readers who are interested in developing DTs for wind and other
systems via physics-informed ML approaches, the results in this work
suggest that the DT should fuse as much data and physical knowledge
as possible into the training of the deep learning model, as long as the
fused information from different sources is physically consistent.

4. Conclusions

The first digital twin for wind farm flow system was developed,
which seamlessly fuses the sparse flow measurements by commercially
available Lidar devices, the wind aerodynamics described by Navier–
Stokes equations, and the turbine modeling by actuator disk method.
By fusing the scattered sparse measurement of Lidar, which can provide
limited but essential information of the real-world wind farm flow field,
and the Navier–Stokes equations and actuator disk turbine modeling,
which can rediscover the wind aerodynamics that is not captured in
the measurements, the DT successfully retrieved the full field in the
entire wind energy site.

The developed DT was then validated via numerical experiments.
Three typical operating scenarios of wind farms, including a greedy
case, a wake-steering case, and a partially-operating case, were in-
cluded in the validation study. The results showed that for all the
cases, the developed DT achieved very accurate mirroring of the phys-
ical wind farm flow system. Specifically, the prediction results for
the spatiotemporal fields covering the entire wind farm, the rotor-
effective speed along wind turbine centerlines, and the speed profiles,
demonstrated that flow characteristics including the speed variations
of incident wind, wake development in the downstream direction (in-
cluding its deficit, deflection and expansion), and meandering in the
crosswind direction, were all captured very well. The root mean square
error of full field predictions showed that the DT was very accurate,
i.e. the prediction error for all the cases, on average, was 0.640 m/s
and 0.439 m/s for the u and v components respectively, which were
just 4.7% and 4.1% relative to the value ranges.

The DT developed, which achieves the accurate in situ full field
prediction using commercially-available sensor devices, paves the way
for future research in the areas of DT-enabled wind technologies across
turbine lifecycle, including assessment, wind farm monitoring, wind
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farm control, maintenance scheduling, and power forecasting. Future
works may involve the development of the interfaces to facilitate the
DT’s application in these areas and the DT’s deployment on cloud
computing platforms. Another direction is to further improve the per-
formance of the DT, such as the extension to full three dimension and
the integration with wind turbine structural and electrical models.
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