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A B S T R A C T

The modeling of wake effects plays an essential role in wind farm optimal design and operation. In this
study, a novel deep learning method, called Super-Fidelity Network (SFNet), is proposed for wind farm wake
modeling, which would be the first attempt to combine the advantages of both analytical models and numerical
models through deep learning methods. Specifically, the low-fidelity flow fields generated by the analytical
models serve as the prior information for predicting high-fidelity flow fields. Then the SFNet learns the
mapping relationships between low-fidelity data and high-fidelity data, thereby predicting high-fidelity flow
fields without resorting to huge computational resources. Numerical experiments demonstrate that the mean
absolute error of the developed model is just 1.9% with respect to the freestream wind speed when compared
with high-fidelity data, after trained on only 45 samples. In addition, the generalizability of the proposed
SFNet in yaw angles, wind speeds and array column extensions is verified by a series of numerical experiments.
Furthermore, the experimental results demonstrate that the trained model is able to predict the flow field of
a wind farm consisting of 100 turbines within several seconds based on a standard desktop.
1. Introduction

As an important and promising low-carbon alternative to fossil
fuels, wind energy has been experiencing rapid and continuous growth
in recent years [1]. Generally, wind turbines are installed in large-
scale arrays to form wind farms, thereby reducing the overall cost.
However, the lower wind speed and higher turbulence intensity caused
by upstream turbines, i.e. the wake effects, have a huge impact on the
downstream turbines, e.g. considerably reducing their power genera-
tions and increasing their structural loads [2]. The incorrect estimation
of the wake effects will greatly undermine the prediction accuracy
of the wind farm energy yield. Therefore, massive efforts have been
poured into wind farm wake modeling, from low-fidelity analytical
wake models to high-fidelity numerical wake models.

The analytical models [3–5] are formulated analytically which can
generate the flow field in real-time even for large-scale wind farms.
Starting from the development of the one-dimensional models [3,4,6],
the analytical models have been extended to two-dimensional [7–
9] and three-dimensional [2,10,11] models. Meanwhile, more con-
tributing factors are included in subsequent studies, including yaw ef-
fects [12–14], background flow fields [15] and terrain conditions [16].
Besides, the Supervisory Control and Data Acquisition (SCADA) data
are also incorporated into the analytical models [17]. However, lim-
ited by model inadequacy and parameter uncertainty, the modeling
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errors of analytical models are still significant. For example, many
improved analytical models are still derived based on the Gaussian
wake model. Even though the velocity in far-wake areas can be approx-
imated quite well, the near-wake features are usually not accurately
captured. By contrast, based on the Computational Fluid Dynamics
(CFD), the numerical models solve the Navier–Stokes (NS) equations
using numerical approaches. Reynolds-averaged Navier–Stokes (RANS)
and Large Eddy Simulation (LES) have been carried out with the turbine
rotors modeled by the actuator line method (ALM) [5,18,19] or the
actuator disk method (ADM) [20–22]. Even though both far-wake and
near-wake areas of the flows can be comprehensively simulated, a CFD
simulation for a wind farm with tens of turbines requires tremendous
computational resources due to the refined mesh needed to resolve the
flow dynamics. For example, on a desktop workstation with an Intel
Xeon CPU @3.60 GHz, it requires more than 100 h on 12 processors to
simulate a single NREL Phase VI wind turbine [23]. And the required
computational resources will rapidly explode with the increase of the
scale of the wind farm (i.e. the number of wind turbines). To sum
up, the analytical models with low fidelity are efficient but lack flow
details, while numerical models with high fidelity can generate high-
quality flow fields but the computational requirements are too high for
engineering applications.
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Nomenclature

Abbreviations

ABL Atmospheric Boundary Layer
ADM Actuator Disk Method
ALM Actuator Line Method
ANN Artificial Neural Network
CFD Computational Fluid Dynamics
CNN Convolutional Neural Network
Conv+BN Convolution + BatchNorm operations
CV Computer Vision
DL Deep Learning
FEM Feature Extraction Module
FFM Feature Fusion Module
GAN Generative Adversarial Network
GNN Graph Neural Network
GPR Gaussian Process Regression
HPC High-Performance Computing
LAM Linear Attention Mechanism
LES Large Eddy Simulation
LSTM Long–Short Term Memory
MAE Mean Absolute Error
ML Machine Learning
MLP Multilayer Perceptron
NREL National Renewable Energy Laboratory
NS Navier–Stokes
RANS Reynolds-Averaged Navier–Stokes
RMSE Root Mean Square Error
SCADA Supervisory Control and Data Acquisition
SCRTP Scientific Computing Research Technology Plat-

form
SF Super-Fidelity
SFNet Super-Fidelity Network
SOWFA Simulator fOr Wind Farm Applications
SR Super-Resolution
VAWT Vertical-Axis Wind Turbine

Symbols

𝒟 The degradation mapping function
𝐸 The expected loss
ℱ The super-fidelity model
𝐹𝑙 The low-fidelity input flow field
𝐹ℎ The high-fidelity input flow field
𝐹ℎ The high-fidelity approximation
ℒ The loss function
𝑁 The number of flow field pairs
𝑛 The number of flow field pairs in the test set
𝑁𝑥 The numbers of pixels in 𝑥 dimension
𝑁𝑦 The numbers of pixels in 𝑦 dimension
𝑆𝑓 The freestream wind speed
𝛷 The regularization term
𝜆 The tradeoff parameter of 𝛷(⋅)
𝜃 The parameters of the super-fidelity model
𝛿 The parameters of the degradation process

In order to narrow the gap between these two kinds of wake models,
series of Machine Learning (ML) methods especially Deep Learning

DL) methods have been proposed over the recent years. For example,
2

ML algorithms have been widely employed to improve the accuracy of
wind farm power prediction with consideration of wake losses, includ-
ing Long Short Term Memory (LSTM) network [24], Artificial Neural
Network (ANN) [25,26], Convolutional Neural Network (CNN) [27]
and Graph Neural Network (GNN) [28]. The impacts of atmospheric
turbulence and stability measurements on wind farm power prediction
were examined in [29]. Aside from power prediction, ML algorithms
have also been introduced and applied in wind farm wake modeling.
In [30], the comparison of three dimensionality reduction techniques
for reducing the flow field dimension was conducted, while a neural
network was adopted to forecast the reduced coefficients from the
input parameters. Furthermore, based on the Generative Adversarial
Network (GAN), a surrogate model trained by high-fidelity data was
developed for the wake predictions in [31], which can generate stream-
wise and spanwise velocity components simultaneously. In [32], by
employing the ML method and RANS/ADM coupling approach, a novel
framework for turbine wake predictions was proposed. The influence
of Atmospheric Boundary Layer (ABL) flows on wake effects was in-
cluded in [33] for the prediction of wake velocity. For cooperative
yaw control, a double-layer machine learning framework was proposed
in [34] using an ANN yawed wake model. The cumulative wake for a
wind farm was analyzed by [35] based on Gaussian Process Regression
(GPR) model. The local inflow information and wake expansion feature
were extracted and their relationship was established by the random
forest method in [17]. The random forest was also introduced in
order to reconstruct the wake flow of the Vertical-Axis Wind Turbine
(VAWT) [36].

The main limitation of the above methods is that the advantages of
both analytical models and numerical models are not fully exploited.
A brief summary of the main features of those methods is provided in
Table 1. To be specific, if only utilizing the data of analytical models,
even the most advanced machine learning method can only predict
the low-fidelity flow fields. By contrast, if only utilizing the data of
high-fidelity numerical models, the generalizability of machine learning
methods will be seriously limited by the number of available data sam-
ples. Due to the computational requirement, it is technically infeasible
to generate a large-scale high-fidelity dataset by numerical models,
which is especially true for utility-scale wind farms with dozens of wind
turbines. Therefore, the reliability of machine learning methods trained
on a small-scale high-fidelity dataset is questionable, especially when
generalizing it to an untrained scenario (e.g. a new wind speed) without
any prior information. On the other hand, although the flow fields
generated by the low-fidelity analytical models do not contain detailed
flow features, the general features (such as the yaw effects and wind
speeds) are well captured, which can serve as the prior information for
high-fidelity flow fields. In summary, the analytical models can provide
the basic status while the numerical models can supply precise details
of the flow fields. Therefore, by fusing the information from both low-
fidelity and high-fidelity models, a novel wind farm wake model with
strong generalizability may be formed balancing the accuracy and the
efficiency. On the basis of the above consideration, the issue of wake
modeling is treated here from the Computer Vision (CV) perspective
and defined as a Super-Fidelity (SF) task, i.e. an analog to the Super-
Resolution (SR) task, which aims to fully exploit the information from
both analytical models and numerical models.

The super-resolution task in CV aims to output high-resolution
images from the input low-resolution images [39]. It has been widely
applied in real-world applications [40]. Similarly, for the proposed
super-fidelity task, the inputs are low-fidelity flow fields generated
by analytical models while the outputs are high-fidelity flow fields
generated by numerical models. Different from the super-resolution
task, the input and output of the super-fidelity task are in the identical
resolution but of different fidelities. That is to say, the super-fidelity
task targets fidelity rather than resolution. Thus, a novel Super-Fidelity
Network (SFNet) is proposed to model and address the defined super-

fidelity task as an image-to-image task. To be specific, to maintain
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Table 1
The main features of some recently developed wake models. Low-fidelity and High-fidelity represent the fidelity of the data
used in the corresponding research.

Reference Main contribution Wind turbine wake features

Low-fidelity High-fidelity Multiple turbines

[37] Short-term wind speed prediction Yes No Yes
[10] 3D wakes No Yes No
[23] Evaluation of three ML algorithms No Yes No
[33] Impact of ABL flows No Yes No
[36] Mean wake of H-rotor VAWTs No Yes No
[38] Stochastic expansion of CFD No Yes Yes
[30] Surrogate modeling No Yes Yes
[31] Spanwise velocity prediction No Yes Yes
Fig. 1. An overview of the super-fidelity Network, (a) network architecture, (b) the Feature Extraction Module (FEM), and (c) the Feature Fusion Module (FFM). Note that Conv+BN
means the Convolution + BatchNorm, LAM denotes the Linear Attention Mechanism, Conv signifies the Convolution layer, add indicates the add operation, Concat represents the
Concatenate operation, and mul is the multiplication operation.
both the input and the output in the raw 2D format, the CNN is
adopted as the basic layer to construct the proposed SFNet instead of
the traditional Multilayer Perceptron (MLP). The former can process
the input in the 2D format, thereby extracting the abundant spatial
correlations among the pixels. The latter normally reshapes the input
into the 1D format first, which would inevitably lead to the loss of
spatial information. Meanwhile, the flow convection and diffusion are
ubiquitous within wake flow fields. Thus, capturing such complicated
and non-local relationships is clearly beyond what CNN is capable of, as
CNN, by design, focuses on only local patterns. To model the long-range
dependencies of the whole flow fields, the Linear Attention Mechanism
(LAM) [41] is then introduced to build the SFNet. As a simplified dot-
product attention mechanism, LAM has shown its great potential in
the computer vision area. It can model the relationship of every pair
of pixels in the input image with 𝑂(𝑁) complexity [42]. Therefore,
the LAM is employed to enable the SFNet to extract the non-local
information of the whole flow fields. The main contributions of this
paper are summarized below:
3

(1) To rapidly and accurately predict wake effects within wind
farms, a novel super-fidelity task is defined to generate high-
fidelity flow fields from low-fidelity inputs. The background is
that high-fidelity data are usually finite and expensive while low-
fidelity data are normally abundant and cheap. The target of
the super-fidelity task is to design and train a model that can
learn the mapping relationships using limited flow field pairs.
Thereafter, the trained model can be generalized to those low-
fidelity data without the corresponding high-fidelity pairs. In
this way, the accuracy of the low-fidelity data can be enhanced,
which is greatly useful for engineering applications such as wind
farm layout optimization.

(2) From the computer vision perspective, a benchmark named
Super-Fidelity Network is proposed to address the super-fidelity
task. The numerical results show that, compared with high-
fidelity data, the Root Mean Square Error (RMSE) predicted by
the proposed method is just 4.3% trained on only 9 flow field
pairs. The RMSE can be further optimized to only 2.8% using
45 flow field pairs.
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Table 2
The detailed setting of each layer in the proposed SFNet.

Name Input size Output size Kernel Channel Stride Padding

Conv+BN1 1 × 30 × 50 32 × 30 × 50 (3, 3) 32 (1, 1) (1, 1)
Conv+BN2 32 × 30 × 50 32 × 30 × 50 (3, 3) 32 (1, 1) (1, 1)

FEM
Conv 32 × 30 × 50 32 × 30 × 50 (1, 1) 32 (1, 1) (0, 0)
Conv+BN 32 × 30 × 50 32 × 30 × 50 (3, 3) 32 (1, 1) (1, 1)
LAM 32 × 30 × 50 32 × 30 × 50 – 32 – –

FFM Conv+BN 96 × 30 × 50 96 × 30 × 50 (3, 3) 96 (1, 1) (1, 1)
LAM 96 × 30 × 50 96 × 30 × 50 – 96 – –

Conv+BN3 96 × 30 × 50 32 × 30 × 50 (3, 3) 32 (1, 1) (1, 1)
Conv1 32 × 30 × 50 8 × 30 × 50 (3, 3) 8 (1, 1) (1, 1)
Conv2 8 × 30 × 50 1 × 30 × 50 (1, 1) 1 (1, 1) (0, 0)
Dense 1 × 1500 1 × 1500 – – – –

(3) The generalizability of the proposed SFNet in wind speeds, yaw
angles and array column extensions is comprehensively eval-
uated and verified through simulation tests. Furthermore, the
test on a wind farm with 10 × 10 turbines demonstrates that
our method can maintain stability and robustness for large-scale
wind farms.

The remaining part of this paper is organized as follows: the prob-
em formalization, the dataset generation and the proposed SFNet
re described in Section 2. Thereafter, the numerical experiments are
eported and discussed in Section 3. The conclusions are finally drawn
n Section 4.

. Methodology

.1. Problem formalization

The super-fidelity task formulated in this work aims at reconstruct-
ng the high-fidelity flow fields from the corresponding low-fidelity
nputs. Generally, the low-fidelity flow field 𝐹𝑙 can be modeled as
he output of the following process (known as the degradation in the
omputer vision community):

𝑙 = 𝒟 (𝐹ℎ; 𝛿) (1)

here 𝒟 denotes a degradation mapping function, 𝐹ℎ represents the
orresponding high-fidelity flow field and 𝛿 means the parameters of
he degradation process. For the super-resolution task, the degradation
rocess is normally unknown. But for super-fidelity, the degradation
rocess is caused by the different principles of analytical wake models
nd numerical wake models. Specifically, the former generates the low-
idelity flow fields based on analytical formulations, while the latter
enerates the high-fidelity flow fields by solving the NS equations using
umerical methods. Similar to the super-resolution task, only the low-
idelity flow fields generated by analytical wake models are available in
he vast majority of cases. Then, the target of the super-fidelity task is
o recover the approximation 𝐹ℎ of the high-fidelity flow field 𝐹ℎ from
he low-fidelity input, following:

ℎ̂ = ℱ (𝐹𝑙; 𝜃) (2)

here ℱ is the super-fidelity model and 𝜃 represents the parameters of
. Hence, given a super-fidelity model ℱ , the target is to narrow the

ap between the approximation 𝐹ℎ and the high-fidelity flow field 𝐹ℎ
s close as possible by optimizing the parameters 𝜃:

∗ = arg min
𝜃

𝐸(𝜃),

(𝜃) =
𝑁
∑

𝑛=1
ℒ (𝐹ℎ, 𝐹ℎ) + 𝜆𝛷(𝜃), (3)

(𝐹ℎ, 𝐹ℎ) = ℒ (𝐹ℎ,ℱ (𝐹𝑙; 𝜃)),
4

here 𝐸(𝜃) means the expected loss, the loss function ℒ (𝐹ℎ, 𝐹ℎ) mea-
ures the disparity between the high-fidelity references and the pre-
icted results, 𝛷(𝜃) is the regularization term weighted by the tradeoff
arameter 𝜆, and 𝑁 represents the number of flow field pairs.

.2. Dataset of flow field pairs

As illustrated in the problem formalization, the dataset for the
uper-fidelity task includes two parts: the low-fidelity flow fields as the
nput and the high-fidelity flow fields as the reference.

For high-fidelity data, the LES flow solver SOWFA (Simulator fOr
ind Farm Applications) [43] developed by the National Renewable

nergy Laboratory (NREL) is employed to solve the filtered NS equa-
ions. The simulation domain is 3000×3000×1000 m, where the inflow
ind comes from the southwest direction. For the mesh generation,

he two-level local mesh refinement is adopted, where the outer mesh
imension, inner mesh dimension and the dimension of the mesh in
etween are 12×12×12 m, 3×3×3 m and 6×6×6 m, respectively. The
otal number of cells is 1.8×107 to guarantee a 3 m mesh size around the
urbine rotors, thereby capturing the detailed turbine wake dynamics.
o investigate flow fields both for freestream and upstream wake
onditions, three NREL 5 MW baseline turbines [44] operating in a row
re simulated, where the 2D mean velocity field around each turbine at
he turbine hub height is extracted from the simulation data. In order
o include a wide range of operating conditions, three freestream mean
ind speeds at 8 m/s, 9 m/s and 10 m/s are considered where each

nflow condition contains 30 simulations with different yaw angles in
he range of [−30◦, 30◦]. Thus, 90 large eddy simulations have been
arried out in total, thereby generating 270 turbine samples. More
etails about the simulation can be referred to Ref. [30].

For low-fidelity data, the Gaussian analytical wake model imple-
ented in FLORIS [5] is adopted. Specifically, 270 corresponding

ow-fidelity samples are generated under the same configuration as
OWFA. To be specific, three NREL 5 MW baseline turbines operating
n a row are simulated under 8 m/s, 9 m/s and 10 m/s wind speeds
ith the same yaw angles used for SOWFA. Other operating parameters
re also set as the same as SOWFA, such as the air density (1.225), the
reestream turbulence intensity (0.06) and the tip speed ratio (8.0).

.3. Super-fidelity network

To address the super-fidelity task formulated by Eq. (3), the Super-
idelity Network is designed and built by Convolution + BatchNorm
perations (Conv+BN), the Feature Extraction Modules (FEM) and the
eature Fusion Module (FFM). As shown in Fig. 1, the input low-
idelity flow field is first processed by Conv+BN1 and Conv+BN2.
hen, the obtained feature maps are successively extracted by three
EMs, while the outputs of FEMs are concatenated and then fused by
FM. Thereafter, the fused feature maps are fed into the Conv+BN3,
hile the extracted features are further processed by two convolutional

ayers, i.e. the Conv1 and Conv2. Finally, a densely connected layer is
ttached to generate the high-fidelity approximation.

As an inherently chaotic flow system, the convection and diffusion
henomena are omnipresent in the turbulent wakes. Thus, the relation-
hips between the local areas and global areas are both important for
ccurately predicting the wake effects. Especially, the correlations of
ocal areas and global areas can be seen as the local spatial details and
lobal contextual information for computer vision tasks respectively.
herefore, the convolutional layers alone cannot fully capture the non-

ocal relationships, as the CNN mainly extracts local patterns and
acks the ability to model long-range context. In order to address this
ssue, the feature extraction module is designed which comprises a
ocal branch and a global branch as shown in Fig. 1(b). Specifically,
he local branch is a relatively simple structure with a convolutional
ayer and a batch norm layer. For the global branch, the input feature
aps are fed into a convolutional layer and then processed by the
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Fig. 2. The predicted flow fields and the corresponding error distributions using FLORIS and SFNet under different training samples, at an example case where the mean inflow
wind speed is 8 m/s.
linear attention mechanism to extract the long-range and non-local
relationships. The linear attention mechanism [41] is an improved
version of the traditional dot-product attention mechanism [45], while
the latter has been widely applied in vision-related and language-
related tasks benefiting from its strong capabilities in capturing global
dependencies [46]. However, the memory and computational costs of
the dot-product attention mechanism increase quadratically with the
size of the input over space and time, hugely hindering its potential
in engineering applications. Therefore, in our previous work [41], we
improved the attention mechanism based on the Taylor approximation
and proposed the linear attention mechanism with linear complexity,
whose effectiveness and efficiency have been verified in vision-related
tasks [42]. The detailed mathematical explanation and calculation
efficiency are given in [41,42]. Based on the above design, the local
relationships can be extracted by the local branch while the global
relationships can be captured by the global branch.

In the proposed SFNet, three feature extraction modules are at-
tached successively, while the outputs are concatenated and aggregated
by the feature fusion module. The structure of the feature fusion module
can be seen in Fig. 1(c), where the concatenated feature maps are first
processed by a Conv+BN block and extracted by the LAM operation.
Thereafter, the output of the Conv+BN block is multiplied by the output
of the LAM operation which is then added with the multiplied feature
maps. The details of each component in the SFNet are provided in
Table 2.
5

2.4. Model training

For model training, the Mean Squared Error (MSE) is selected as the
loss function:

ℒ (𝐹ℎ, 𝐹ℎ) =
1

𝑁𝑥 ×𝑁𝑦

𝑁𝑥
∑

𝑖=1

𝑁𝑦
∑

𝑗=1
(𝐹 𝑖,𝑗

ℎ − 𝐹ℎ
𝑖,𝑗 )2 (4)

where 𝐹 𝑖,𝑗
ℎ and 𝐹ℎ

𝑖,𝑗 indicate the value of the flow field at the position
(𝑖, 𝑗) obtained by SOWFA and the SFNet respectively, while 𝑁𝑥 and 𝑁𝑦
represent the numbers of pixels in 𝑥 and 𝑦 dimensions. By minimizing
ℒ (⋅), the network is driven to approximate the high-fidelity flow fields
as much as possible.

The model is optimized by the Adam optimizer with a batch size of
16 and a learning rate of 3 × 10−4. To enhance the generalizability of
the model, the flow field pairs are augmented by horizontal flip, vertical
flip and random rotation from −10◦ to 10◦. The probabilities to conduct
those augmentation strategies for a pair are all set as 0.1.

2.5. Evaluation metrics

For all experiments, the performance of the super-fidelity results is
measured by Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE):
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Fig. 3. The predicted flow fields and the corresponding error distributions using FLORIS and SFNet under different training samples, at an example case where the mean inflow
wind speed is 9 m/s.
𝑀𝐴𝐸 = 1
𝑁𝑡𝑒𝑠𝑡

𝑁𝑡𝑒𝑠𝑡
∑

𝑛=1

|

|

|

𝐹ℎ − 𝐹ℎ
|

|

|

(5)

𝑅𝑀𝑆𝐸 =

√

√

√

√
1

𝑁𝑡𝑒𝑠𝑡

𝑁𝑡𝑒𝑠𝑡
∑

𝑛=1
(𝐹ℎ − 𝐹ℎ)2 (6)

where 𝐹ℎ is the approximation predicted by the SFNet model, 𝐹ℎ is the
reference high-fidelity flow field and 𝑁𝑡𝑒𝑠𝑡 is the number of samples
in the test set. The metrics are then normalized by the corresponding
freestream wind speeds to obtain the relative errors:

𝑀𝐴𝐸(%) = 𝑀𝐴𝐸
𝑆𝑓

× 100% (7)

𝑅𝑀𝑆𝐸(%) = 𝑅𝑀𝑆𝐸
𝑆𝑓

× 100% (8)

where 𝑆𝑓 means the freestream wind speed.

3. Results and discussions

To comprehensively analyze the performance of the proposed
SFNet, the ablation study is first carried out to demonstrate the validity
of each novel component in our model. Then, the prediction errors on
6

the test set using different training samples are calculated to evaluate
the effectiveness of our model under different training scenarios. There-
after, quantitative evaluations to verify the generalizability are carried
out for wind speeds, yaw angles and array column extensions. Finally,
a case study is carried out to demonstrate the ability of the proposed
SFNet in simulating a large-scale wind farm.

3.1. Ablation study

To address the super-fidelity task, instead of directly adopting the
traditional machine learning method such as MLP, the CNN-based
SFNet is proposed with two novel modules, i.e. FEM and FFM. Intu-
itively, both the input and the output of the super-fidelity task are
in 2D matrix format rather than 1D array format. With MLP, the
samples need to be reshaped into 1D array format. In this way, the
spatial correlations will be unavoidably eliminated during the reshap-
ing operation. By contrast, with the convolutional operation, the intact
spatial information will be retained and captured. But the initial design
philosophy of the CNN determines what it can do is to extract the local
spatial relationships within its limited receptive field. Considering the
universality of the convection and diffusion phenomena in the wind
farm, the local relationships are clearly not enough to model the spatial
corrections of the complex wake effects. Thus, two novel modules are
designed in the proposed SFNet, i.e. FEM and FFM, to further extract
and fuse the feature maps.
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Fig. 4. The mean flow centerline for two example cases, predicted by FLORIS, SFNet
and SOWFA. SFNet#9, SFNet#18 and SFNet#45 represent the training scenarios using
9, 18 and 45 samples respectively.

Table 3
The ablation study about the FEM and FFM in the proposed SFNet.

Training samples Model MAE (m/s) RMSE (m/s)

9

MLP 0.357 0.509
Baseline1 0.327 0.471
Baseline2 0.288 0.415
SFNet 0.272 0.386

27

MLP 0.247 0.361
Baseline1 0.233 0.338
Baseline2 0.227 0.332
SFNet 0.224 0.325

45

MLP 0.197 0.285
Baseline1 0.192 0.281
Baseline2 0.179 0.265
SFNet 0.174 0.256

To demonstrate the advantage of CNN structure as well as the
validity of FEM and FFM, a series of ablation studies are conducted.
Specifically, the FFM and the global branch of FEM (the branch con-
tains the LAM) are removed to build Baseline1. Then, only the FFM
7

of SFNet is removed to build Baseline2. Also, the MLP is implemented
for comparison whose parameter count is roughly the same as the
SFNet. The experiments are conducted under three conditions with
different training samples which can be seen in Table 3. As can be
seen, benefiting from the intact spatial information, even the basic
baseline (Baseline1) can provide flow fields better than MLP. However,
the performance gap will be narrowed with the increase in training
samples. The above tendency illustrates that the increase of training
samples can offset the defect of algorithms to a certain extent. As the
long-range and non-local spatial relationships can be extracted by the
global branch of FEM, the performance of Baseline2 is better than
Baseline1. Similarly, the effectiveness of FFM can be verified by the
comparison between SFNet and Baseline2.

3.2. Performance validation

To validate the effectiveness of the proposed method, the SFNet is
trained using different numbers of samples. To be specific, as there are
30 simulations with 90 turbine samples for each wind speed, 1, 2, 3, 4,
5, 10, 15, 20, and 25 cases from each wind speed condition are selected
for training and validation. Five cases from each wind condition (i.e. 45
samples in total), which are not used in the training process, are used
for testing.

As can be seen from Table 4, trained on only 9 samples (including
1 for validation to prevent the over-fitting issue), the proposed SFNet
can still deliver decent predictions with the MAE of only 3.0% and
the RMSE of only 4.3%. Apparently, with the increase of training
samples, the MAE and RMSE are reduced gradually. When 45 samples
are used for training, the MAE and RMSE reach only 1.9% and 2.8%
respectively.

To further illustrate the prediction performance, the results for two
cases under different wind speeds and yaw angles are provided in
Figs. 2 and 3, including the flow fields generated by the SFNet and
the error distributions. As can be seen, not only the far-wake fields
but also the near-wake features are successfully reconstructed by the
SFNet, even when trained on only 9 samples. Specifically, the main
features of the flow field including the wake deflection caused by
the turbine yaw angle, the wake recovery in the streamwise direction
and the upstream wake’s impact on the downstream flow field are all
accurately captured. Although the errors around the second and third
turbines are higher than those of the first turbine due to the more
complex wake conditions, this gap can be narrowed with the increase
of training samples. By contrast, even though the Gaussian model in
FLORIS provides a reasonable representation of far-wake regions, there
exists a clear discrepancy in the near-wake flow fields for all three
turbines.

The mean flow centerlines in Fig. 4 and velocity profiles in Fig. 5
further reveal the error distributions of the low-fidelity FLORIS data.
Taking Case#1 in Fig. 4 as an example, the maximum discrepancy
of the mean flow centerline reaches nearly 2.5 m/s for FLORIS data,
while the maximum error of the SFNet does not exceed 0.5 m/s even
if only trained by 9 samples. In Fig. 5, the velocity profiles near the
wake areas of the low-fidelity FLORIS data are far away from the high-
fidelity SOWFA data. By contrast, the developed SFNet trained on only
9 samples is able to predict the turbine wake flows at all streamwise
locations for both near wake and far wake areas, vital for the accurate
and reliable prediction of energy yields.

3.3. Generalizability

Although the proposed SFNet can clearly enhance the accuracy
of low-fidelity flow fields when trained on only limited high-fidelity
samples, the significance of such a model will be greatly reduced if
it is only effective for those cases in the training set. Therefore, in
this section, the generalizability of the SFNet in wind speeds, yaw
angles and array column extensions, including both interpolations and
extrapolations, are comprehensively demonstrated.
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Fig. 5. The velocity profiles for two example cases, predicted by FLORIS, SFNet and SOWFA. SFNet#9, SFNet#18 and SFNet#45 represent the training scenarios using 9, 18 and
45 samples respectively.
Table 4
The results (including the prediction MAE and RMSE) using different numbers of training samples.

Training cases Training samples Test Samples MAE (m/s) RMSE (m/s) MAE (%) RMSE (%)

1 9 45 0.272 0.386 3.0 4.3
2 18 45 0.235 0.334 2.6 3.7
3 27 45 0.224 0.325 2.5 3.6
4 36 45 0.198 0.296 2.2 3.3
5 45 45 0.174 0.256 1.9 2.8
10 90 45 0.159 0.233 1.8 2.6
15 135 45 0.153 0.226 1.7 2.5
20 180 45 0.126 0.181 1.4 2.0
25 225 45 0.116 0.172 1.3 1.9
3.3.1. Generalizability in wind speeds
Three experiments are designed to demonstrate the generalizability

of the SFNet in wind speeds. The samples within the whole dataset
are divided into three groups according to their freestream mean wind
speeds: 8 m/s, 9 m/s and 10 m/s. Thereafter, for each experiment, the
proposed SFNet is trained and validated under limited samples only
in two groups, and then tested by those samples from the remaining
group. For example, for the first experiment, 15 samples from the 8 m/s
group and 15 samples the from 9 m/s group are selected to train and
validate the model. Then, the performance of the trained model is
tested with all samples (90 samples in total) from the 10 m/s group.
As those samples with 10 m/s freestream mean wind speed are totally
unavailable during the training procedure, the generalizability of the
proposed SFNet from 8 m/s and 9 m/s scenarios to 10 m/s scenario
can be truly verified. The experiments using 8 m/s and 10 m/s groups
to test the 9 m/s group, as well as using 9 m/s and 10 m/s groups to
test the 8 m/s group, are conducted in a similar way.

As shown in Table 5, although the test samples are totally unseen
during the training phase, both the MAE and RMSE are still at a
relatively low level for all three scenarios, especially when considering
the limited number of training samples (only 15 samples for each wind
speed). Taking the second scenario as an example, trained by samples
under 8 m/s and 10 m/s, the proposed SFNet can be generalized to
8

Table 5
The results on the generalizability of the proposed SFNet in wind speeds.

Training speeds Test speed MAE (m/s) RMSE (m/s) MAE (%) RMSE (%)

8 m/s 9 m/s 10 m/s 0.214 0.318 2.1 3.2
8 m/s 10 m/s 9 m/s 0.187 0.278 2.1 3.1
9 m/s 10 m/s 8 m/s 0.185 0.272 2.3 3.4

those samples under 9 m/s with the MAE of only 2.1% and the RMSE
of 3.1%. Apparently, the errors will locate in a similar or lower range
when generalizing the SFNet to other wind speeds between 8 m/s
and 10 m/s. The flow field results in Fig. 6 further illustrate the
generalizability of the SFNet in wind speeds.

3.3.2. Generalizability in yaw angles
Two experiments are designed to demonstrate the generalizability

of the SFNet in yaw angles. In the first experiment, 30 samples whose
yaw angles are located within [−20◦, 20◦] are taken as the training set,
while those samples with yaw angles in [−30◦,−20◦] or [20◦, 30◦] are
all used as the test set. Similarly, 30 samples whose yaw angles are
larger than 10◦ or less than −10◦ are selected as the training set, while
those samples with yaw angles in [−10◦, 10◦] are all used as the test
set. As the yaw angles in the training set and test set are distributed in
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Fig. 6. The predicted flow fields and the corresponding error distributions using FLORIS and SFNet under different training settings of wind speeds, at three example cases.
Table 6
The results on the generalizability of the proposed SFNet in yaw angles.

Training yaw angles Test yaw angles MAE (m/s) RMSE (m/s) MAE (%) RMSE (%)

[−20◦ , 20◦] [−30◦ , 20◦] and [20◦ , 30◦] 0.252 0.372 2.8 4.1
[−30◦ ,−10◦] and [10◦ , 30◦] [−10◦ , 10◦] 0.223 0.315 2.5 3.5
9
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Fig. 7. The predicted flow fields and the corresponding error distributions using FLORIS and SFNet at two example cases, where the SFNet is trained on samples with yaw angles
greater than 10◦.
totally different ranges, the generalizability of the proposed SFNet in
yaw angles can be verified.

As shown in Table 6, trained by a specific range of yaw angles, the
proposed SFNet can be generalized to those samples with a different
range of yaw angles with low prediction errors. Further, these two
experiments demonstrate that the SFNet can be generalized to samples
with larger or smaller yaw angles compared with the training samples,
respectively. Obviously, the MAE and RMSE of the SFNet will reach a
lower level when predicting the yaw angles located in the training yaw
angle range, even though the training samples can only cover limited
values of the potential yaw angles. Qualitative results in Figs. 7 and 8
further demonstrate the generalizability of the SFNet in yaw angles.

3.3.3. Generalizability in array column extensions
The whole simulation is carried out based on an array with three

turbines operating in a row (a 1×3 array). Thus, the effectiveness of the
model when extending to larger multiple columns (such as 1×5 or 1×10
arrays), i.e. the generalizability of the model in column extensions,
is unverified and unwarranted. To demonstrate the generalizability of
the SFNet in extending to multiple columns, the training samples are
divided into three groups according to their columns: the first column,
the second column and the third column. Then, 15 samples in the first
column and 15 samples in the second column are selected to train and
validate the model, while whole samples located in the third column
are taken as the test set. That is to say, the model is trained by limited
10
Table 7
The results on the generalizability of the proposed SFNet in array column extensions.

Training turbines Test turbine MAE (m/s) RMSE (m/s) MAE (%) RMSE (%)

1st 2nd 3rd 0.306 0.397 3.4 4.4

samples from a 1 × 2 array and then tested by the extended turbines
on the third column. As those extended turbines are not in the training
set, the generalizability of the SFNet in extending to more columns of
turbines can thus be verified.

As shown in Table 7 and Fig. 9, the proposed SFNet can be general-
ized to the turbine which is not contained in the training set. Trained
on only 30 samples from a 1×2 array, the errors on the extended third
turbine are only 3.4% measured by MAE and 4.4% measured by RMSE.
As for the extensions in the spanwise direction, it is straightforward as
the wake interactions mainly take place in the streamwise direction.
Therefore, after verifying the generalization performance, the predic-
tion using the proposed SFNet for the utility-scale wind farms can thus
be carried out.

3.4. Model predictions

To demonstrate the effectiveness of the developed SFNet for large-
scale wind farm wake predictions, the low-fidelity flow fields of a 10×10
wind farm is simulated using FLORIS as the input. The yaw angles
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Fig. 8. The predicted flow fields and the corresponding error distributions using FLORIS and SFNet at two example cases, where the SFNet is trained on samples with yaw angles
less than 20◦.
are randomly selected between [−20◦, 20◦] for each turbine with the
9 m/s freestream mean wind speed, while the SFNet trained on 45
samples is employed for prediction. As illustrated in Fig. 10, the near-
wake features, wake interactions and yaw effects for all turbines are
all successfully reconstructed. In particular, the whole low-fidelity data
generation and model prediction procedure are conducted on a single
Intel Core i7-7700 CPU and completed within several seconds. While
on the other hand, if an LES model were used, massive computing
resources would be required for such a large-scale wind farm. By
contrast, what the SFNet needs is only a limited set of high-fidelity data
samples and a low-fidelity analytical model. Then, the developed SFNet
could deliver a decent flow fields prediction as rapid as the low-fidelity
model while retaining the features captured in the high-fidelity model.

3.5. Discussions

As illustrated, the proposed SFNet has the ability to accurately
generate high-fidelity flow fields based on the low-fidelity input even if
trained on limited samples. Most importantly, the proposed pipeline for
wake modeling is much more computational-friendly than LES models.
To be specific, the high-fidelity flow fields generation procedure for
each case requires about 1.13× 104 CPU hours which can be completed
within 44 h using local HPC clusters with 256 processors. Based on
the comprehensive experiments, five training cases are sufficient to
guarantee the performance of the proposed SFNet. Therefore, about
11
1.70 × 105 CPU hours are required to simulate the high-fidelity flow
fields under three different wind speeds (five cases for each speed).
Then, the high-fidelity wake interactions for the utility-scale wind farm,
such as the 10×10 wind farm in Fig. 10, can be predicted by our pipeline
within seconds using a standard desktop. In sharp contrast, if using
an LES model to simulate such a large-scale wind farm under various
operating conditions, the computational requirement will be enormous.

Considering both the accuracy and efficiency, the proposed SFNet
has great potential for practical applications. Specifically, the flow field
can be predicted by the proposed SFNet accurately for both far-wake
and near-wake features. Thus, the applications such as the wind farm
energy yield prediction which can be implemented with SOWFA, can
also be implemented with the proposed SFNet but more efficiently.
Taking the power generation prediction as an example, it is cubically
related to the wind speed. Thus, a small prediction error of the flow
fields will lead to a large error in power prediction. As the substantial
experiments showed, the proposed SFNet can predict the flow fields
much better than the analytical models and meanwhile significantly
faster than the numerical models. In summary, the proposed SFNet
combines both the great efficiency of the low-fidelity model and the
high accuracy of the high-fidelity model.

On the other hand, there also exist some limitations in the proposed
pipeline. First, the current pipeline focuses on bi-fidelity data, and can-
not take advantage of the dataset with three or more levels of fidelities.
In the future, the proposed SFNet will be extended to address this issue
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Fig. 9. The predicted flow fields and the corresponding error distributions using FLORIS and SFNet at two example cases, where the SFNet is trained on samples on the 1st and
2nd columns.
where the model will be trained to fuse information from various data
sources. Second, limited by the dataset volume, the proposed SFNet is
currently a two-dimensional wake model focusing on the flow fields at
the turbine hub height. The application of the proposed SFNet in the
three-dimensional scenario will be investigated in the future.

4. Conclusions

In this work, a novel Super-Fidelity Network was proposed for
wind farm wake modeling, which, to the best of our knowledge, is
12
the first attempt to combine both low-fidelity analytical wake models
and high-fidelity numerical models through deep learning methods.
Taking the low-fidelity data generated by analytical models as the
input, the developed SFNet is able to predict flow fields similarly as
high-fidelity numerical models after trained on limited samples. The
numerical experiments demonstrated that the proposed SFNet was able
to significantly enhance the low-fidelity input even when trained and
validated on only 9 samples. More importantly, the near-wake features,
which are normally oversimplified by the analytical models, have been
finely reconstructed by the developed SFNet.



Energy Conversion and Management 270 (2022) 116185R. Li et al.
Fig. 10. The predicted flow fields around an 10 × 10 example wind farm by the FLORIS and the SFNet trained on 45 samples. The yaw angles are randomly selected between
[−20◦ , 20◦] for each turbine and the mean wind speed is chosen as 9 m/s.
Compared with the existing machine learning wake modeling meth-
ods, the clear advantage of the SFNet was the strong generalizability. In
our pipeline, the robust and consistent performance of the SFNet for un-
trained scenarios was guaranteed by the prior information provided by
the low-fidelity input. A series of numerical experiments demonstrated
13
the stability and generalizability of the developed method for extending
to the unseen range of wind speeds, yaw angles and array columns,
even if trained on a very limited number of samples. Moreover, trained
on only 45 samples, the SFNet is able to generate the flow fields for a
10 × 10 wind farm successfully.
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The future work may involve the use of the proposed SFNet wake
model for wind farm layout optimization. Another interesting direction
is to extend the SFNet to dynamic wind farm wake modeling.
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