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a b s t r a c t

Modeling of wind farm wakes is of great importance for the optimal design and operation of wind farms.
In this work a surrogate modeling method for parametrized fluid flows is proposed for wind farm wake
modeling, based on the state-of-the-art deep learning framework i.e. deep convolutional conditional
generative adversarial network. Based on the proposed method and the data generated by high-fidelity
large eddy simulations, a novel wind farm wake model is developed. The developed model is first
validated against high-fidelity data and the results show that it achieves accurate, efficient, and robust
prediction of wind turbine wake flow, at all the streamwise locations including both near wake and far
wake, for both streamwise and spanwise velocity components, and at the cases with different inflow
wind profiles. Then an extensive parametric study is carried out and the results show that the model
generalizes well to unknown flow scenarios. Furthermore, a case study for a wind farm is investigated by
the developed model. The prediction results are then compared with high-fidelity simulations, showing
that the model can predict the wind farm wake flow (including both the streamwise and spanwise ve-
locity fields) very well.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Wind energy, in particular offshore wind energy, is under
intense investment in recent years. It is one of the largest renew-
able energy resources and is of great importance for achieving the
net-zero target. In order to reduce the overall cost of wind power,
individual wind turbines are usually grouped together to form large
wind farms. However, the wake interactions between wind tur-
bines have a large impact on the wind farm's overall performance
[1], such as decreasing the power generations and increasing the
structural loads of the rear turbines operating in full/partial wakes.
The wake interactions have been investigated in the literature
based on various wake models [2] ranging from low-fidelity [3e5],
medium-fidelity [6e8], to high-fidelity models [9e11].

The high-fidelity CFD models solve the Navier-Stokes (NS)
equations using numerical methods with the turbine modeled as
actuator disks [12e14] or actuator lines [15e17]. These models can
capture the detailed 3-D dynamic turbine wake behaviors. How-
ever, it is time-consuming and expensive to run. For example, the
(J. Zhang), xiaowei.zhao@
large eddy simulation (LES) of the three-turbine array presented in
Ref. [18] needs around two days to complete using 256 CPU cores
on high-performance computing clusters. The low-fidelity models,
on the other hand, are based on analytical formulations and can be
evaluated in real time on a standard desktop, though their perfor-
mance is limited by the modeling errors (including model in-
adequacy and parameter uncertainty [19]). Numerous analytical
models have been proposed in the literature [20e22].

In order to achieve fast and accurate wake predictions, the
development of new wake models is needed. Recent works include
the modeling of wakes under yaw [23], the expansion of physical
wake boundary [24], the 3D wakes [25,26], and the impact of at-
mospheric boundary layer (ABL) flows [27]. The main features of
these wake models are summarized in Table 1. However, as these
models are based on low-order analytical formulations, important
limitations exist.

(1) Most of these models are derived based on Gaussian wake
model, which approximates the velocity in the far wake quite
well but can not capture the near wake feature.

(2) These models usually take the mean flow velocity as the
input and can not accommodate a given lateral velocity
profile as the inflow condition. Thus they can not take the
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Table 1
The main features of the wake models recently developed in the literature. Ux and Uy represent the streamwise wind velocity and spanwise wind velocity, respectively.

Reference Main contributions Wind turbine wake features

Far wake Near wake Lateral inflow profile Ux Uy Multiple turbines

[23] Wakes under yaw Yes No Uniform Yes No No
[24] Physical wake boundary Yes No Uniform Yes No No
[25] 3D wakes Yes No Uniform Yes No No
[26] Complex terrain Yes No Uniform Yes No Yes
[27] Impact of ABL flows Yes No Uniform Yes No No
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lateral variations in the upstream wind into account in the
flow field predictions.

(3) Thesemodels focus on the prediction of the streamwisewind
velocity, while the spanwise velocity is usually ignored.
However, the spanwise velocity can also be significant in
certain scenarios such as wind farm yaw control [17].

To address these limitations, this work focuses on the devel-
opment of a novel wakemodel based onmachine learning (ML) and
high-fidelity CFD simulations. By learning from the high-fidelity
CFD model through flow field data, the ML model will be able to
capture the main features of wake flows that cannot be captured by
the low-order analytical wakemodels, while being evaluated as fast
as these models. Currently there are very few studies on the ML-
based surrogate modeling of wind farm wakes. In Ref. [28], a sur-
rogate modeling method for flows around distributed structures
was proposed and applied to build a surrogate model for wind farm
wakes. The developed model employed different techniques for
dimensionality reduction and fully-connected neural networks
(NN) for wake predictions. In Ref. [18], a dynamic wind farm wake
model was developed based on proper orthogonal decomposition
(POD) for dimensionality reduction and long short-term memory
networks (LSTM) for predicting wakes at future time steps using
historical flow fields. The aforementioned works all included an
explicit dimensionality reduction process. In this work, to avoid the
explicit dimensionality reduction errors and meanwhile mitigate
the overfitting issues in predicting high-dimensional target, a novel
surrogate modeling method is proposed for wind farm wake
modeling, which follows the generative adversarial network (GAN)
framework [29], one of the most recent advancements in the field
of deep learning.

As GAN is extremely powerful in generating realistic high-
dimensional content, it may offer improved performance as a
new ML framework for the surrogate modeling of general fluid
flows. Different from explicitly fitting the training target in the
supervised ML, GAN is trained implicitly to produce realistic high-
dimensional content. It consists of two networks, a generator and a
discriminator. The generator is designed to generate high-
dimensional content while the discriminator aims to distinguish
the content generated by the generator from the true content. The
generator and the discriminator are trained in an adversarial way
such that the generator learns to produce more realistic content so
that it can ‘fool’ the discriminator, while the discriminator learns
better ways to distinguish fake from true. Since its first publication,
GAN has attracted extensive attention rapidly in ML field. Its de-
velopments have led a lot of exciting successes, such as the con-
ditional generative adversarial network (CGAN) [30], deep
convolutional generative adversarial network (DC-GAN) in image
representations [31], image-to-image translation with CGAN [32],
Wasserstein GAN [33], and cycle-consistent GAN [34]. The appli-
cations of GAN in fluid problems are still rare. A few examples
include the super-resolution problems of fluid flows [35], super-
resolution turbulent flow reconstructions [36], modeling of fluid
flows using DC-GAN [37], and turbulence enrichment [38]. It is
2

expected that more works based on GAN will emerge in the future
on various fluid applications, as they share an important feature -
the high dimensionality of the model output (e.g. high-resolution
images vs high-fidelity flow snapshots).

The surrogate modeling method proposed in this work follows
the deep convolutional conditional generative adversarial network
(DC-CGAN), which can take advantage of both the deep convolu-
tional network's ability in image processing and the CGAN's ability
in generating high-dimensional content according to specific la-
bels/images. In order to build a robust and flexible surrogate model
for fluid systems, i) the conditional GAN framework instead of the
original GAN is employed so that the generator will generate the
‘realistic’ flow field according to the corresponding flow parame-
ters; ii) the flow parameters are embedded through a fully-
connected embedding layer before concatenated with the flow
field and fed to the discriminator. In this way, the flow parameters
from various sources can be accommodated such as the parameters
defining the governing equations and boundary conditions; iii) the
noise prior and the batch normalization [39] that are usually pre-
sent in GAN models are excluded, as the considered fluid systems
are deterministic and the surrogate model should not rely on the
batch information such as the batch mean and standard deviation.

The proposed surrogate modeling method is then applied to
wind farm wake modeling. Specifically, a CFD database of wind
turbine wakes is first generated [28]. Then the CGAN-based wake
model is trained to take the inflow wind profiles and the yaw
conditions as the model input and to predict the multi-channel
flow field (i.e. both streamwise and spanwise velocity fields) as
the model output. After training, the prediction results are first
validated against high-fidelity simulations. The results show that
the developed model can predict wind turbine wakes very accu-
rately in real time. Specifically, the prediction errors for the
streamwise and spanwise velocity fields are 0.102 ms�1 and
0.045 ms�1 respectively which are just 1.1 % and 1.0 % of the cor-
responding value ranges. Also, the main features of turbine wakes
are predicted very well, including both the overall features (such as
the wake deflection with the turbine yaw angle, the wake recovery
in the streamwise direction, the wake expansion in the spanwise
direction) and the detailed features (such as the fluctuations in the
freestream wind, the flow acceleration on both sides of the tur-
bines, the turbines’ blockage effects on the upstream flow, and the
yaw-induced spanwise velocity in the wake regions). In addition, a
comprehensive parametric study is carried out and the results
show that the developed wake model generalizes well to the flow
scenarios that are not present in the training dataset.

To further demonstrate the use of the developed CGAN-based
wake model in wind farm applications, a case study for a wind
farm is carried out. For comparison purpose, the corresponding
high-fidelity simulations are also carried out using the LES flow
solver SOWFA (Simulator fOrWind Farm Applications) [40]. SOWFA
is developed by National Renewable Energy Laboratory (NREL) and
has been validated and applied in numerous studies [16,41,42]. The
results for this case study demonstrate that the developed CGAN
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model is able to achieve fast, accurate, and robust predictions of the
wind farmwake flows including both the streamwise and spanwise
velocity fields.

The main contributions and novelties of this work are summa-
rized as follows:

(1) A novel wind farm wake model is developed based on high-
fidelity CFD database using deep learning. The developed
model can achieve accurate and robust wake predictions in
real time. Compared with previous wake models based on
analytical formulations, the data-based model developed in
this work i) captures both the near wake and far wake fea-
tures, ii) is able to accommodate given inflow velocity profile
(with lateral variations) as the input for the flow field pre-
dictions, iii) achieves the predictions of both streamwise and
spanwise wind velocity components, and iv) can be applied
for the flow field predictions around both single turbine and
multiple turbines. The accuracy and efficiency of the devel-
oped model are fully demonstrated through the validation
study against CFD data and its generalization performance is
evaluated through a systematic parametric study.

(2) To build this data-based wake model, a novel surrogate
modeling method for general fluid flows is proposed
following the state-of-the-art deep learning framework i.e.
deep convolutional conditional generative adversarial net-
works. The proposed method does not need explicit
dimensionality reduction while the issue of overfitting in
predicting high-dimensional target is mitigated.

(3) A case study for a wind farm is carried out using both the
developed wake model and the high-fidelity model SOWFA.
The results fully demonstrate that the developed model can
achieve accurate and robust real-time prediction on wind
farm wakes.

The remaining part of this paper is organized as follows: the
proposed deep learning based surrogate modeling method is
described in Section 2, where the neural network structure and
generative adversarial training process are explained in detail. It is
then applied to the development of a novel wind farmwake model
in Section 3, where the prediction performance of the developed
model is evaluated first, then a case study for a wind farm is pre-
sented including the results from both the developed model and
the high-fidelity LES model. Finally the conclusions are drawn in
Section 4.

2. DC-CGAN based surrogate modeling method

A general steady-state parametrized fluid system can be
described by

P mp
½u� ¼ 0; x2Umu

;

B mb
½u� ¼ 0; x2vUmu

(1)

where u is the state of the systemwhile the differential operator P
(parametrized by mp), the differential operatorB (parametrized by
mb) and U (parametrized by mu) represent the partial differential
equations (PDEs) describing the fluid systems, the boundary con-
ditions and the flow domain respectively. Hereby we denote the
flow parameters arising from the governing equations, the domain
geometry and the boundary conditions as m ¼ [mp, mu, mb]. Given a
specific value of m, the flow field in the domainU, hereby denoted as
U, can be obtained by solving Eq. (1) numerically. However, this
usually requires a lot of computational resources and is time-
consuming, as the degree of freedom (DoF) of the discretized
PDEs is usually very high. This section is devoted to developing a
3

surrogate modeling method to approximate the mapping between
m and U so that fast and accurate predictions of U can be achieved.
The proposed method is based on the state-of-the-art deep
learning technique DC-CGAN. It is illustrated in Fig. 1, including the
generation of training data in Fig. 1(A), the GAN structure and
training in Fig. 1(B), and the online prediction in Fig. 1(C). They are
detailed as below.

2.1. Training dataset

The surrogate model is trained based on a set of samples where
each sample consists of the flow parameter m and the corre-
sponding flow field U, as shown in Fig. 1(A). In order to generate the
training dataset, a sampling method is usually employed to
generate a set of flow parameters [m1, m2,…, mN] whereN represents
the sample size and mi represents the flow parameters arising from
the governing equation, the domain geometry and the boundary
conditions (i.e. mi ¼ ½mip;miu;mib�). Then a set of CFD simulations are
carried out for each flow parameter mi so that the corresponding
flow field Ui can be obtained, as shown in Fig. 1 (A). After data
generation, all the flow parameters are collected as the training
input matrix X of shape [N, Nm] where Nm is the dimension of the
flow parameter and each row contains a sample of the flow
parameter. All the corresponding high-fidelity flow field data are
collected as the training target matrix Y of shape [N, N1, …, Nd, C]
where [N1, …, Nd] is the spatial resolution of the d-dimension flow
domain, C is the number of the channels of the flow field data, and
each row contains a sample of the flow field in the d-dimension
domain with C channels. Each channel usually represents a color
such as red, green or blue of an RBG image in image processing
while it is used to represent a flow quantity such as streamwise
velocity or spanwise velocity in this work. We mention that the
dimensions of both the training input m and the training target U
are typically very high as the former can include the boundary
conditions (such as the inflow velocity) at discrete points while the
latter can include multi-channel flow field on a grid of high
dimension. It is this high-dimensionality that makes the surrogate
modeling of such systems very challenging.

2.2. GAN structure

After obtaining the training dataset, the DC-CGAN based sur-
rogate model is constructed, which is illustrated in Fig. 1 (B). It
consists of a generator and a discriminator. The generator, as shown
in shaded blue in Fig. 1 (B), takes the flow parameters as the input,
processes it through a dense layer and a reshape layer which are
then followed by a series of transposed convolution layers, and

finally returns the flow field prediction Û as the output. The input-
output mapping of the generator, denoted as G , can be expressed
as

G ðmÞ ¼ �s+T g
�Lg+R +N gðmÞ (2)

where ◦ represents the function composition, Lg represents the
number of transposed convolution layers, and N , R , T and s

represent the mappings of the dense layer, the reshape layer, the
transposed convolution layer, and the activation respectively. In
this work, as shown in Fig. 1 (B), LeakyReLU is used for the acti-
vations in the intermediate layers and the hyperbolic tangent
function is used for the last layer. The subscript g in Equation (2)
indicates the corresponding mappings rely on the trainable
weights which will be updated during the generator training.

The discriminator, as shown in shaded orange in Fig. 1 (B), takes
the data pair of the embedded flow parameter Z and the



Fig. 1. The flowchart illustrating the proposed DC-CGAN based surrogate modeling method.
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corresponding flow field U or Û (real or generated) as the input,
processes it through a series of convolution layers, and finally
returns a single classification indicator (i.e. fake or real) as the
output. The main difference between CGAN and GAN is that the
labels (here the flow parameters) are combined with the corre-
sponding flow field for the examination by the discriminator, while
GAN only distinguishes the generated flow field from the real flow
field without the labeling information. Therefore, the CGAN struc-
ture is more suitable for the surrogate modeling of parametrized
fluid flows, as the unique correspondence between the flow
parameter and the flow field can be established. Here in the pro-
posed discriminator structure, an embedding layer which consists
of a dense and a reshape layer (as shown in shaded green in Fig. 1
(B)) is employed to map the flow parameters to the same shape as
4

the flow field so that it can be concatenated with the flow field and
fed to the discriminator. The input-output mapping of the
discriminator including the embedding part can be expressed as

D ð½~U;m�Þ ¼ s+N d+F +ðs+C dÞLdð½~U;R +N eðmÞ�Þ (3)

where ~U can be the real flow field U or the generated flow field Û, Ld
represents the number of convolution layers, and F and C
represent the mappings of the flatten layer and the convolution
layer respectively. As shown in Fig. 1 (B), LeakyReLU is used for the
activation in the intermediate layers while the sigmoid function is
used for the last layer so that a value between 0 and 1 can be
returned as the output for the binary classification. The subscripts
d and e in Eq. (3) indicate that the corresponding mappings in the
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discriminator and the embedding part rely on the trainable weights
which will be updated during the discriminator training.

2.3. GAN training

Algorithm 1. Surrogate modeling of parametrized fluid flows
based on DC-CGAN
1 % The offline training
2 Generate N samples of the flow parameters: [m1, m2, …, mN].
3 Run CFD simulations to generate the corresponding flow field data [U1, U2, …, UN].
4 Preprocess the flow parameters and the flow field data by MinMaxScalers.
5 Set the batch size Nb; Set the total number of training iterations Ntr.
6 for j ¼ 1 to Ntr do
7 Sample a random batch of training data: {[Ui, mi], 1 � i � Nb}.

8 Generate the flow field predictions f½Ûi�;1� i� Nbg by propagating {[mi], 1 � i � Nb} through the generator.

9 Train the discriminator to minimize εD by feeding {[Ui, mi], 1 � i � Nb} and f½Ûi
;mi�; 1� i� Nbg to the discriminator.

10 Train the generator to minimize εG by feeding fmi�;1� i� Nbg to the whole network. Only the trainable weights inside the generator are trained while the trainable
weights in the discriminator (including the embedding part) are kept frozen.

11 end for
12 % The online prediction
13 Set the test flow parameter m* and process it through the MinMaxScaler.
14 Predict the scaled flow field by propagating the scaled flow parameter through the generator network.
15 Obtain the final flow field prediction by scaling back the generator output.
The discriminator is trained to distinguish the pair of real flow
field and flow parameter from the pair of generated flow field and
flow parameter, while the generator is trained to generate realistic
flow field such that the generated data pair is not distinguishable
from the real data pair. Specifically, the discriminator is trained to
minimize the classification error defined as

εD ¼ 1
Nb

XNb

i¼1

�log D ð½Ui;mi�Þ þ 1
Nb

XNb

i¼1

�logð1�D ð½Ûi
;mi�ÞÞ

(4)

where {[Ui, mi], 1 � i � Nb} is a batch of training samples consisting
of the real flow field and the corresponding flow parameters, and

f½Ûi
;mi�;1� i� Nbg is a batch of training samples consisting of the

fake flow field generated by the generator and the corresponding
flow parameters. The data batches are fed into the discriminator
network to minimize εD , so that the generated and real data pair
can be classified as fake (i.e. 0) and real (i.e. 1) by the discriminator
after training. The discriminator training is illustrated by the
dashed line colored in orange in Fig. 1 (B).

The generator is trained to minimize the classification error
defined as

εG ¼ 1
Nb

XNb

i¼1

�log D ð½G ðmiÞ;mi�Þ (5)

Here {mi, 1� i� Nb} is a batch of flow parameters which are fed into
the generator to generate flow field that is then examined by the
discriminator. The minimization of the classification error εG thus
guides the generator to produce data pairs which are likely to be
classified as real by the discriminator. As can be seen from Eq. (5),
the generator training involves the whole CGAN network including
the generator and the discriminator. We mention that the trainable
weights within the discriminator network are kept frozen during
the training process while the trainable weights inside the
5

generator are trained to minimize εG . The generator training is
illustrated by the dashed line colored in blue in Fig. 1 (B).

The discriminator training and the generator training are carried
out alternatively until the generator can produce realistic flow field
that is not distinguishable from the real flow field obtained by the
high-fidelity simulations. All the training data including the
training input and the training target are standardized before being
fed into the NN for training. The Adam optimization algorithm [43]
is used for the NN training and the model is implemented based on
the ML package Keras [44] with Tensorflow [45] backend. The
training is carried out using NVIDIA Tesla K80 GPU. After training,
the generator can be used as the surrogate model of the parame-
trized fluid systems for the online prediction of the flow field with
flow parameters as the model input, see Fig. 1 (C). The overall
process including both the offline training and the online predic-
tion is summarized as Algorithm 1.

3. Application to wind farm wake modeling

This section is devoted to the development of an accurate and
efficient data-based model of wind farm wakes, by employing the
surrogatemodeling method proposed in Section 2. In particular, we
focus on the prediction of the wind velocity field (including the
streamwise and spanwise velocity fields) around the wind turbine
with the inflow wind profile Uin and the turbine yaw angle g as the
model input. The flow domain and the input flow parameter are
illustrated in Fig. 2. The training data, which is generated by high-
fidelity CFD simulations, is described in Section 3.1. The model
training and validation are then presented in detail in Section 3.2. In
Section 3.3, a comparison study is carried out to demonstrate the
performance of the developed CGAN model compared to the POD-
NN method [28,46,47] which is based on dimensionality reduction
and supervised ML approach. Next, a parametric study is carried
out in Section 3.4 to systematically evaluate the generalization
performance of the developed CGAN wake model. Finally a case
study is investigated in Section 3.5 to fully demonstrate the use of
the developed model in wind farm applications.

3.1. High-fidelity data

To generate the training dataset, the high-fidelity LES flow
solver SOWFA [40] is employed to solve the filtered Navier-Stokes
equations where the turbine rotors are modeled as actuator lines.
In this work, in order to capture the wake interactions in the
training dataset, the cases of three turbines operating in a row are



Fig. 3. The illustration of the inflow wind profiles for selected samples that are rep-
resentatives of the training dataset.

Fig. 2. The illustration of the flow domain and the input flow parameter including the
inflow wind profile Uin and the turbine yaw angle g.
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simulated and then the 2D mean velocity field around each turbine
at the turbine hub height is extracted from the simulation data.
Thus each simulation can generate three training samples i.e. the
flow field around the 1st, the 2nd and the 3rd turbines. In order to
cover a wide range of inflow conditions, three groups of large eddy
simulations are carried out where different freestream mean wind
speeds at 8 ms�1, 9 ms�1 and 10 ms�1 are used for different groups.
An illustration of the inflow wind profiles is given in Fig. 3, where
Group#1, Group#2 and Group#3 correspond to the simulation
groups with the freestreammeanwind speed of 8ms�1, 9 ms�1 and
10 ms�1 respectively. As shown in Fig. 3, for each group, the inflow
wind profiles include the ‘flat’ profiles representing the freestream
wind conditions and the ‘bell-shape’ profiles representing the
incoming wind conditions induced by the upstream turbine wakes.
Furthermore, in order to capture the yaw effects in the training
dataset, 30 simulations have been carried out for each simulation
group, where the turbine yaw angles are randomly sampled in the
interval [�30�, 30�] for each simulation case. Therefore, in total, 90
large eddy simulations have been carried out and 270 training
samples are finally generated, which used around one million CPU
6

hours on high-performance computing (HPC) clusters. This high-
fidelity database is used in this section to build an accurate and
efficient surrogate model to predict the wind flow around wind
turbine with the inflow wind profile Uin and the turbine yaw angle
g as the model input. The interested reader can refer to Ref. [28] for
further details such as the mesh generation, the atmospheric
boundary layer simulation, and the turbine specification.

Specifically, the model input m is specified as the combination of
the wind speed at 32 uniformly distributed points along the inflow
boundary and the value of turbine yaw angle. Thus the dimension
of m is 33. The flow field U is specified as the combination of the
streamwise velocity field Ux and spanwise velocity field Uy at the
32 � 32 uniform grid points in the flow domain shown in Fig. 2.
Thus the dimension of U is 32 � 32 � 2. We mention that the
considered fluid system is governed by the NS equations where the
turbine rotors are modeled as actuator lines in the momentum
equations. Thus the turbine parameters such as g appear in the
governing equations. Therefore, this case demonstrates that the
proposed surrogate modeling method can accommodate flow pa-
rameters arising from different sources (here boundary conditions
and governing equations) and can be used for the prediction of
multi-channel flow fields.
3.2. Model training and validation

All the high-fidelity CFD data are first divided into 216 training
samples and 54 test samples, then the surrogate model is trained
based on the flow field data in the training samples. After training,
its performance is evaluated by comparing the flow field pre-
dictions with the corresponding CFD data in the test samples which
are assumed unavailable during the training process. The results for
four randomly-selected test cases are shown in Fig. 4, including
both the prediction by the developed CGAN model and the ground
truth. The corresponding error distributions are shown in Fig. 5. The
flow conditions for these four cases are: g ¼ �13.6� and the up-
stream wake inflow (Case#1); g ¼ 16.5� and the freestream inflow
(Case#2); g¼�26.1� and the freestream inflow (Case#3); g¼�1.1�

and the upstream wake inflow (Case#4). As can be seen, the flow
field predictions, including both the streamwise velocity field Ux

and the spanwise velocity field Uy, match with the corresponding
LES results very well for all the cases. The main features of the flow
field are captured accurately, such as the wake deflection with the
turbine yaw angle, the wake recovery in the streamwise direction,
the wake expansion in the spanwise direction, and the upstream
wake's impact on the downstream flow field. The flow details are
also predicted such as the fluctuations in the incoming wind, the
flow acceleration on both sides of the turbines, the turbines'
blockage effects on the upstream flow, and the yaw-induced
spanwise velocity in the wake regions.

To further quantify the prediction accuracy, the root mean
square errors (RMSE) of the CGAN model predictions for all the 54
test cases are calculated, which are defined as

εUx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NtestNgrd

XNtest

j¼1

XNgrd

i¼1

ðUj
xi � Û

j
xiÞ

2

vuuut (6)

and

εUy
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NtestNgrd

XNtest

j¼1

XNgrd

i¼1

ðUj
yi � Û

j
yiÞ

2

vuuut (7)

for the streamwise and spanwise velocity field respectively. Here



Fig. 4. The comparisons between the predictions by the developed CGAN model and the corresponding true values for four randomly-selected test cases.

Fig. 5. The difference between the flow field predicted by the developed CGAN model and the corresponding true values for four randomly-selected test cases.
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Ntest is the total number of test cases, Ngrd is the dimension of the

grid, Uj
xi and Û

j
xi represent the true and predicted values of the

streamwise velocity at the ith grid point for the jth test case, and Uj
yi

and Û
j
yi represent the true and predicted values of the spanwise

velocity at the ith grid point for the jth test case. The results are
given in Table 2. As shown, the RMSEs of the streamwise and
spanwise velocity field predictions are 0.102 ms�1 and 0.045 ms�1

respectively, which are just 1.1 % and 1.0 % of the corresponding
value ranges. We mention that the wake prediction with such ac-
curacy is achieved with an online prediction time of just 0.002s,
which is negligible compared to large-scale numerical simulations
which will require several thousand CPU hours.

In addition, as the turbine wake evolves greatly in the down-
stream direction, the performance of the developed wake model is
further examined by extracting the wind velocity profiles at various
streamwise locations ranging from upstream of the turbine, near
wake, to far wake. The results are given in Fig. 6 including both the
prediction results and the corresponding ground truth. At the cases
with freestream inflow, as shown in Fig. 6(c,e), the ‘flat’ inflow
profile is observed upstream of the wind turbine (X ¼ �1D), then
the ‘double-peak’ profile is predicted at the turbine location
(X¼ 0D) and in the near wake region (X¼ 1D and X¼ 2D). Thewake
then recovers to the ‘bell-shape’ profile traveling further down-
stream. As for the cases with upstream wake inflow, as shown in
Fig. 6(a,g), the ‘bell-shape’ profile is observed at upstream location
(X ¼ �1D), then the wake development is observed similarly as the
freestream inflow cases but with a clearly faster recovery to the
‘bell-shape’ profiles. The spanwise velocity profiles are shown in
Fig. 6(b,d,f,h). As shown, the inducing of the spanwise velocity at
turbine location (X ¼ 0D) is observed for all the cases. The yaw-
induced spanwise velocity is clearly observed for the case where
the turbine operates in strongly-yawed condition, as shown by
Fig. 6(f). To further quantify the accuracy, the prediction RMSEs for
the velocity profiles at various locations are calculated. For the
streamwise velocity, the RMSEs are [0.064, 0.090, 0.098, 0.117,
0.109, 0.139]ms�1 for X¼ [-1D, 0D, 1D, 2D, 3D, 4D] respectively. For
the spanwise velocity, the RMSEs are [0.030, 0.050, 0.038, 0.045,
0.050, 0.063]ms�1 for X¼ [-1D, 0D,1D, 2D, 3D, 4D] respectively. It is
concluded that the developed CGAN model is able to predict the
wind turbine wake flows very accurately, at all the streamwise lo-
cations including both near wake and far wake, for both streamwise
and spanwise velocity components, and at the cases with different
inflow wind profiles.
3.3. Performance comparison with the POD-NN method

This subsection further demonstrates the performance of the
developed CGAN wake model, by comparing it with a recently
proposed surrogate modeling method called POD-NN [28,46,47]. In
general, for the surrogate modeling of fluid systems, the high-
dimensional flow field is usually reduced to its low-dimensional
representations by a dimensionality reduction technique, then a
supervised ML model is constructed to predict the reduced
Table 2
The RMSEs of the flow field predictions by the developed CGAN model. The results
by the POD-NN method are also included for comparisons.

Model Quantity Value range RMSE (% of range)

CGAN Ux (ms�1) [1.92,10.84] 0.102 (1.1 %)
Uy(ms�1) [-2.25,2.14] 0.045 (1.0 %)

POD-NN Ux (ms�1) [1.92,10.84] 0.131 (1.5 %)
Uy(ms�1) [-2.25,2.14] 0.045 (1.0 %)
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coefficients with the flow parameters as the model input. Such
approaches have been employed in various fluid applications
recently [48,49]. In this subsection, the surrogate modeling of wind
turbine wake flow is carried out by the POD-NNmethod, where the
flow field is first reduced by the POD and then the POD coefficients
are predicted by NN with the turbine yaw angle and the inflow
velocity profile as the input. The hyper-parameters involved in the
POD-NN method are tuned using the four-fold cross-validation
technique. Specifically, for the results presented in this subsection,
the number of the POD basis is set as 25, the L2 regularization is
applied to the NN training with a regularization coefficient of 0.1,
and the neuron number of the hidden layer is set as 50.Wemention
that for comparison purpose, the POD-NN model is trained and
evaluated with the same training and test datasets as the CGAN
model developed in previous sections. The prediction RMSEs by the
POD-NN method are calculated and given in Table 2. As shown, the
CGAN model is clearly more accurate in predicting the streamwise
velocity field, while the prediction accuracy of both models is
similar in predicting the spanwise velocity, as the spanwise velocity
component is much simpler than the streamwise component. In
addition, for the POD-NN, the dimensionality reduction errors for
the spanwise and streamwise velocity are 0.021 ms�1 and
0.039ms�1 respectively, while there is no dimensionality reduction
error for the CGANmethod. It is also worth mentioning that careful
tuning of the hyper-parameters (in particular the number of the
POD basis) is needed to achieve such accuracy for the POD-NN,
while it is not the case for the CGAN model where dimensionality
reduction is not needed. The results in this subsection thus
demonstrate the accuracy and robustness of the developed CGAN
wake model compared with the POD-NN.
3.4. Generalization performance

To systematically evaluate the generalization performance of
the developed CGANmodel, in this subsection, a series of flow field
predictions (including the flow scenarios that are distinct from the
training dataset) are carried out. In particular, the parametric study
considers a series of turbine yaw angles, freestream wind speeds,
and upstream wake magnitudes.

First, a series of turbine yaw angles and freestreamwind speeds
are considered. For this set of predictions, the inflow wind profile
Uin is specified as constant values (i.e. the freestream wind speed)
along the inflow boundary. The prediction results are given in Fig. 7.
Each column in Fig. 7 shows the flow field predicted with the same
inflow profiles and different yaw angles i.e. [ � 30�, �20�, �10�, 0�,
10�, 20�, 30�], while each row shows the flow field predicted with
the same yaw angle and different freestream wind speeds i.e. [7, 8,
9, 10] ms�1. As can be seen, the wake deflection is captured suc-
cessfully with the change of the turbine yaw angle, and the velocity
magnitude in the whole domain is predicted well with the change
of the freestream wind speed. We emphasize that the training
dataset, as described in Section 3.1, includes only the cases with the
freestream wind speed of 8 ms�1, 9 ms�1 and 10 ms�1. Thus the
prediction of the 7 ms�1 cases, i.e. the first column of Fig. 7, dem-
onstrates that the CGAN wake model captures the qualitative flow
features (such as yaw effects) successfully even for unknown flow
scenarios.

Next, a series of upstream wake inflows are considered. Spe-
cifically, the Gaussian profile, one of the most popular wake profiles
in analytical wake modeling, is used to specify the inflow wind
profile Uin as



Fig. 6. The velocity profiles predicted by the developed CGAN model at various streamwise locations for four randomly-selected test cases. The corresponding true values are also
shown for comparisons.
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Fig. 7. The flow fields predicted by the developed CGAN model at a series of turbine yaw angles and freestream wind speeds.
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Uin ¼ U0 � dUexp

 
� y2

2s2g

!
; (8)

where U0 represents the freestream wind speed, dU represents the
magnitude of the upstreamwake, y is the spanwise coordinate, and
sg characterizes the wakewidth. The value of sg is set as 50m in the
following predictions, which leads to a reasonable wake width. The
10
prediction results are given in Fig. 8, where each column shows the
flow field predicted with the same freestream wind speed U0 and
different upstream wake magnitudes dU i.e. [0.0, 0.5, 1.0, 1.5, 2.0,
2.5, 3.0] ms�1, while each row shows the flow field predicted with
the same upstream wake magnitude dU and different freestream
wind speed U0 i.e. [7, 8, 9, 10] ms�1. As can be seen, the main fea-
tures of the flow field are predicted well, where the far field is
mainly influenced by the freestream wind speed and the wake



Fig. 8. The flow fields predicted by the developed CGAN model for a series of upstream wake magnitudes and freestream wind speeds.

J. Zhang and X. Zhao Energy 238 (2022) 121747
regions are clearly influenced by the upstream wake magnitudes.
Wemention that the training dataset only includes the cases where
the upstreamwakemagnitude is around 3e4ms�1, while the CGAN
wake model is shown to be able to predict the flow field with
various upstream wake magnitudes. In addition, the ‘bell-shape’
inflow profiles in the training dataset are not Gaussian but the re-
sults shown in Fig. 8 are predicted with Gaussian profiles as the
model input. This set of predictions thus demonstrate that the
11
developed CGANmodel generalizes well to the inflowwind profiles
that are not present in the training dataset.

Last but not least, to complete this parametric study, the pre-
dictions for a series of turbine yaw angles and upstream wake
magnitudes are carried out. The results are shown in Fig. 9, where
the freestreamwind speed is set as 8ms�1. As can be seen, thewake
deflection and the wake deficit are predicted well with respect to
the turbine yaw angles and the upstream wake magnitudes.



Fig. 9. The flow fields predicted by the developed CGAN model for a series of turbine yaw angles and upstream wake magnitudes.
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In summary, the results in Figs. 7e9 fully demonstrate that the
developed CGAN wake model generalizes well to unknown flow
scenarios and learns the qualitative features of wind turbine wake
flows successfully. It is concluded that the developed model can
achieve efficient, accurate, and robust predictions of wind turbine
wakes.
12
3.5. A case study

To further demonstrate the use of the developed CGAN wake
model for wind farm applications, a case study for a wind farm is
carried out in this subsection. The considered wind farm consists of
six NREL 5 MW wind turbines and the turbine layout is illustrated
in Fig. 10. For comparison purpose, the high-fidelity simulations



Fig. 10. The illustration of the considered wind farm layout and the mesh configura-
tion for high-fidelity simulations.
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using SOWFA are also carried out for this wind farm. The corre-
sponding mesh configuration is shown in Fig. 10 where two-level
mesh refinement is applied so that the mesh size in the turbine
wake region is 3 m. The total number of mesh is around 2.6 � 107.
The SOWFA simulations are carried out with a precursor atmo-
spheric boundary layer simulation where the mean wind speed at
hub height is set as 10 ms�1 and the turbulence intensity is set as
6 %. After wind farm simulations, the mean flow field at turbine hub
height is extracted. In order to compare the CGAN model
Fig. 11. The prediction results by the developed C
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predictions with SOWFA results at the same wind conditions, the
freestreamwind profile is extracted from SOWFA and then used as
the inflow wind conditions for the CGAN model.

The prediction of single turbine wakes has been demonstrated
in previous subsections. The extension to wind farm wake predic-
tion in this subsection follows the method proposed in Ref. [28].
Specifically, it is carried out by predicting single turbinewakes from
upstream to downstream locations, where the inflowwind profiles
for the downstream turbines are specified by the prediction results
of the upstream turbine wakes. The flow field of the whole wind
farm is finally obtained by combining the prediction results of all
the single turbine wakes. The interested reader may refer to
Ref. [28] for further details.

Two yaw control strategies are considered in this case study, i.e.
the greedy case and the wake-steering case. The wind velocity
fields, including both the streamwise and spanwise velocity, are
predicted using both SOWFA and the developed CGAN model. For
the greedy case, the yawangles of all thewind turbines are set as 0�.
The results are given in Fig. 11. As shown, the streamwise and
spanwise velocity fields predicted by the CGAN model match well
with SOWFA results. It is observed that the rear turbines operate in
the full wakes generated by the upstream turbines. Then the wake-
steering case is investigated, where the yaw angles of all the wind
turbines are specified according to the optimized yaw angles re-
ported in Ref. [17]. The yaw angles for T1, T2, T3, T4, T5 and T6 are
[25.85, 25.15, 39.80, 39.75, 0.35, 0.45] degrees respectively. The
results are given in Fig. 12. A great match is observed between the
SOWFA and CGAN predictions, such as the yaw-induced wake de-
flections (see Fig. 12(a)) and the yaw-induced spanwise wind speed
magnitudes (see Fig. 12(b)). As expected, the wakes generated by
the front turbines are steered away from the rear turbines (i.e. T5
and T6) in this wake-steering case. We mention that the data used
for training the CGAN model only includes the yaw angles in the
range of [�30�, 30�], while the yaw angles of T3 and T4 in this case
largely exceed this range. Therefore, the wake-steering case further
GAN model and SOWFA for the greedy case.



Fig. 12. The prediction results by the developed CGAN model and SOWFA for the wake-steering case.
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demonstrates the robustness of the developed CGAN wake model
in the scenarios of extrapolated turbine yaw angles.

4. Conclusions

In this work, a surrogate modeling method for general fluid
flows was proposed based on the deep convolutional conditional
generative adversarial network (DC-CGAN). The proposed method
was then applied to develop a novel wind farmwake model for the
wake predictions under various inflow conditions and turbine yaw
settings. The performance of the developed wake model was
extensively evaluated, as summarized below.

(1) The validation study against high-fidelity CFD results
showed that the developed model was able to predict the
wind turbinewake flows very accurately and efficiently, at all
the streamwise locations including both near wake and far
wake, for both streamwise and spanwise velocity compo-
nents, and at the cases with different inflow wind profiles. In
particular, the prediction errors for the streamwise and
spanwise velocity fields were just 0.102ms�1 and 0.045ms�1

respectively, while the online computation time was only
0.002s. The main wake features, including the wake deflec-
tion with the turbine yaw angle, the wake recovery in the
streamwise direction, the wake expansion in the spanwise
direction, the flow acceleration on both sides of the turbines,
and the yaw-induced spanwise velocity in the wake regions,
were all predicted very accurately.

(2) The parametric study for a set of turbine yaw angles, free-
stream wind speeds, and upstream wake magnitudes was
carried out and the results showed that the developed CGAN
model generalized well to the flow scenarios that were not
present in the training dataset, and that the developedmodel
successfully learned the qualitative features of wind turbine
wake flows.

(3) The case study for awind farmwas carried out using both the
developed model and the high-fidelity LES model. The
comparison study showed a good agreement between the
developed model and the LES model, including the pre-
dictions for both the streamwise and the spanwise velocity
14
fields. This case study fully demonstrated the performance of
the developed model in wind farm applications.

Future works may involve the surrogate modeling of three-
dimensional/dynamic wind farm wake flows. Another direction is
to explore the use of the developed model in the optimal control
design of wind farms.
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