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a b s t r a c t 

An efficient Bayesian uncertainty quantification approach is proposed, which combines the adaptive high 

dimensional model representation technique (HDMR) and stochastic collocation (SC) method based gen- 

eralized polynomial chaos (gPC) to construct the surrogate for sampling procedure in Bayesian calibration 

step. Specifically, the adaptive HDMR technique is used to decompose the original high dimensional prob- 

lems into several lower-dimensional subproblems, which are subsequently solved with the gPC-based SC 

method. Then the Bayesian calibration and prediction are carried out with the so-constructed surrogate 

model. A new indicator based on the variance of the corresponding component function is employed to 

identify the important components of the HDMR, instead of the original one based on the impact on the 

output mean, as the input parameters that can be well informed in the inverse problem are the ones that 

the model output is sensitive to. Further, a rigorous convergence study of the approximate posterior to 

the true posterior is carried out for the proposed approach. Its applications to both a simple mathematical 

function and a complex fluid dynamic model, i.e. k - ω- γ transition model, are investigated, demonstrating 

both its efficiency and accuracy. In the application to k - ω- γ transition model, the results show not only 

a quantified uncertainty overlapping well with the experimental data, but also a great improvement of 

the match between the prediction mean and the experimental data, which may be due to the further 

account of the intermittency through the spread of the model parameters. 

© 2017 Published by Elsevier Ltd. 
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. Introduction 

Hypersonic boundary layer transition is not only of fundamen-

al interest in fluid dynamics, it is also of great practical relevance

n the design of many aerodynamic configurations at hypersonic

peeds. Despite the rapid development of Direct numerical sim-

lation (DNS) technique, Reynolds-averaged-Navier-Stokes (RANS) 

odel and empirical e N method are still the main tools for transi-

ion predictions in engineering applications, due to its affordabil-

ty compared to DNS. A local-variable-based RANS model, namely

 - ω- γ model, has been proposed recently, which can successfully

imulate three-dimensional (3-D) high-speed aerodynamic flow 

ransition with a reasonably wide range of Mach numbers [1,2] .

owever, flow transition to turbulence is a very complex process,

nvolving receptivity process, linear modal growth, mode interac-

ion, final breakdown to turbulence etc. [3] , which cannot be cor-

ectly simulated by RANS model. Transition prediction with RANS

odel is highly unreliable and the aim of this work is to quantify
∗ Corresponding author. 
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he uncertainty of the quantity of interest (QoI) in the hypersonic

oundary layer transition simulations with k - ω- γ model. 

In the pioneering work of Kennedy and O’Hagan [4] , the

ayesian calibration technique for a general computer model is

resented and the uncertainties are classified into parameter un-

ertainty, model inadequacy, residual variability, parametric uncer-

ainty, observation error and code uncertainty. The uncertainty of

ANS predictions mainly comes from the first two sources, param-

ter uncertainty and model inadequacy. The former represents the

ncertainty due to the lack of knowledge of the model parame-

ers and the latter represents the discrepancy between true phys-

cal observation and model output at optimal model parameters.

 number of studies have focused on the parameter uncertainty.

heung et al. [5] have applied Bayesian uncertainty analysis to

palart-Allmaras (SA) turbulence model for wall-bounded incom-

ressible turbulent flow at variable pressure gradients. They em-

loyed three different stochastic models for inadequacy terms and

ompared them in terms of model plausibility and prediction of

oIs. Oliver and Moser [6] extended the work of Cheung et al. by

onsidering four stochastic extensions of four eddy viscosity turbu-

ence models. They proposed a more complex stochastic model to

ake account of the multi-scale structure of the boundary layer. In
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Ref. [7] , Edeling et al. estimated the parameter variability within

and across the scenarios (i.e. at different pressure gradients) under

the Bayesian framework. Further, they [8] utilized Bayesian Model-

Scenario Averaging approach to synthesize the results of 5 tur-

bulence models at 14 scenarios, resulting a substantial improve-

ment in both prediction mean and variance. Bayesian parameter

estimation was also used for other flow configurations, e.g. Jet-in-

Crossflow [9] etc. Besides, parameter uncertainty of RANS models

has also been assessed in Ref. [10] , with the input uncertainty im-

posed through a prior distribution, based on an extensive literature

survey about the parameter dispersion. 

Besides parameter uncertainty mentioned above, model-

inadequacy is also a major source of uncertainty in RANS predic-

tion and quantifying and reducing this uncertainty have raised the

research interests recently in the field. Dow and Wang [11] em-

ployed the Bayesian approach to infer the turbulent viscosity from

DNS data. In Ref. [12] , Emory et al. proposed an approach to

quantify the uncertainty directly through Reynolds stress. In Ref

[13] , Gorle and Iaccarino carried out uncertainty quantification of

turbulent scalar flux models, taking account of the uncertainty

directly through Reynolds stress. In Ref. [14] , Duraisamy et al.

proposed a data-driven approach for turbulence and transition

modeling, which consists mainly of injecting the functional form

of deficiencies inferred by experimental data into simulations to

obtain more accurate predictions. A data-driven, physics-informed

Bayesian approach has been proposed recently by Xiao et al. [15] ,

taking account of the model-form uncertainty directly through

Reynolds stress and an iterative ensemble Kalman method was

used to incorporate the prior knowledge and the experimental

data. 

The RANS turbulence models have been the main focus of the

previously mentioned work. The research of uncertainty quantifi-

cation for RANS transition modeling is rather limited. An excep-

tion is the work of Pecnik et al. [16] , in which they applied UQ

for laminar-turbulent transition in turbo-machinery configurations,

using the γ − ˜ Re θt model of Menter et al. [17] , but only a forward

uncertainty propagation is carried out and the input uncertainty is

imposed through a prior distribution. Bayesian uncertainty analy-

sis provides a rigorous approach to quantify the uncertainty aris-

ing from the mathematical modeling and simulation, and to incor-

porate the prior knowledge and experimental data systematically,

through Bayesian data updating. Thus in this work, we apply the

Bayesian framework to quantify the uncertainty arising from the

k - ω- γ transition model in hypersonic transition simulations. We

focus on the parameter uncertainty and the model inadequacy is

simply termed as a multiplicative Gaussian random variable, as in

the work [5] . Modeling the inadequacy terms requires more phys-

ical insight of transition process and is a RANS modeling issue

rather than a UQ of an existed model. In this work we restrict our-

selves to the latter issue and treat k - ω- γ model as a black box. 

A key step in this framework is the Bayesian calibration. After

identifying the prior distribution of the input parameters and con-

structing the stochastic model, the posterior distributions of the

model parameters are obtained through Bayes’ rule. This procedure

usually requires a sampling method, e.g. Markov chain Monte-Carlo

(MCMC) [18] . A large number of model evaluations, typically tens

of thousands, are required in the sampling procedure, which are

computationally expensive. A number of methods exist in the lit-

erature to reduce the computational cost while retaining the non-

intrusiveness of the corresponding approach, e.g. [19,20] . In Ref.

[21] , Ma and Zabaras proposed an adaptive version of high dimen-

sional model representation technique (HDMR) to decompose the

original high dimension problem into lower dimension subprob-

lems and solved them with the adaptive sparse grid collocation

(ASGC) method [22] they proposed previously. The efficiency of

this approach is demonstrated with some mathematical functions
nd also with a set of fluid-mechanic problems. In Ref. [23] Edel-

ng et al. improved the original Simplex-stochastic collocation (SSC)

20] method and also combined it with the adaptive HDMR tech-

ique, resulting in an improved scalability. They applied this ap-

roach in a nozzle and an airfoil flow. These approaches have

nly been applied in the forward problem and their application

o inverse problems hasn’t been explored yet. Marzouk and Xiu

24] proposed a stochastic collocation approach to Bayesian infer-

nce in inverse problems and conducted a rigorous error analysis

or the approximate posterior. Several examples were carried out

o demonstrate the efficiency of the proposed method, including a

urgers’ equation case and a genetic toggle switch case in biology. 

In this paper we combine the adaptive high-dimensional

tochastic model representation (HDMR) technique [21] with the

tochastic collocation (SC) approach based on generalized polyno-

ial chaos (gPC) [24] , to construct the surrogate model. Then this

urrogate model is used for Bayesian inference in the inverse prob-

em. This idea is inspired by the work of Ma and Zabaras [21] ,

n which they combined the HDMR technique with the adaptive

parse grid collocation (ASGC) [22] method to solve the forward

roblem. The proposed approach can be seen as an extension of

he stochastic collocation approach proposed by Marzouk and Xiu

24] , by integrating it into the high dimensional model representa-

ion framework. 

The paper is organized as follows: the Bayesian uncertainty

uantification framework is described in Section 2 . In Section 3 the

urrogate model construction approach is described, including the

PC-based stochastic collocation method and the HDMR technique.

he algorithm is summarized in Section 4 . In Section 5 we demon-

trate the accuracy and efficiency of the proposed method through

 simple mathematical function. A comparison between the pro-

osed method and the exact model is given. After testing our ap-

roach with this simple mathematical function, we apply the ap-

roach to k - ω- γ transition modeling in hypersonic transition sim-

lations in Section 6 . The results are given in Section 6.4 , includ-

ng both the posterior distribution of the input parameters and the

rediction mean with quantified uncertainty. Finally the conclusion

s drawn in Section 7 . 

. Bayesian uncertainty quantification framework 

.1. General review 

This part provides a brief description of the UQ framework,

ollowing the work of [5,7] . The main steps are the specification

f the flow class and quantity of interest (QoI), the collection of

xperimental data, the construction of the stochastic model, the

ayesian calibration, and validation and prediction. As is pointed

ut in Ref. [5] , whether a model is considered valid or not depends

n its ability to predict the QoIs to the required accuracy and pre-

ision, rather than to predict all aspects of the physical world. Thus

he identification of the QoIs is a key issue and should be kept in

ind during the whole uncertainty quantification process. In this

ork, we assume the QoIs are observable for the corresponding

xperiments and thus we use the observation of QoIs as the data

o inform the model parameters. 

In Bayesian framework, various forms of uncertainty, whether

leatoric or epistemic, are all represented through probability. Thus

e can characterize the input parameter uncertainty by their prob-

bility density function (PDF). In the Bayesian calibration step,

he posterior distributions of the parameters are obtained through

ayes’ rule: 

p( z | d ) = 

p( d | z ) p( z ) 

p( d ) 
(1)
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here random vector z represents the model parameter and d the

xperimental observation. Since the denominator doesn’t depend

n z , we can omit it and obtain the un-normalized version of

ayes’ rule: 

p( z | d ) ∝ p( d | z ) p( z ) (2) 

ere the prior distribution p( z ) can be specified based on prior

nowledge and the calculation of the likelihood p( d | z ) requires the

ANS model output and the experimental observation, combined

y the constructed stochastic model. 

After calibration, the prediction step can be done by propagat-

ng the PDF of the input parameters through the simulation code

o obtain the PDF of the QoIs. The so-obtained PDF is actually

he posterior distribution conditional on the experimental obser-

ation: 

p( ̃  d | d ) = 

∫ 
p( ̃  d , z | d ) d z = 

∫ 
p( ̃  d | d , z ) p( z | d ) d z 

= 

∫ 
p( ̃  d | z ) p( z | d ) d z (3) 

his derivation follows from Ref. [7] and the last step in Eq. (3) fol-

ows by assuming ˜ d and d are conditionally independent given z . 

.2. Construction of the stochastic model 

The stochastic model needs to be specified to calculate the like-

ihood function, and solve the inverse problem. Here we construct

he stochastic model by accounting for the model inadequacy sim-

ly through a multiplicative Gaussian random variable: 

˜ 
 = (1 + η) M ( x , z ) (4) 

here η is a random vector with each component ηi as zero

ean, independent and identically distributed Gaussian: i.e. ηi ∼
 (0 , σ 2 ) . M ( x , z ) is the output of QoIs from our simulation

ode, depending on the explanatory variable x (e.g. Mach number,

eynolds number etc.) and the model parameter z . ˜ d represents

he true process and can be related to the experimental observa-

ion d as: 

 = 

˜ d + e (5) 

ere e represents the measurement error, which is modeled as a

ero mean, independent and identically distributed Gaussian, i.e.

 i ∼ N (0 , σ 2 
e ) . σ e is determined from the corresponding experi-

ents. Thus from Eqs. (4) and (5) we can relate the model output

o the experimental observation, and we can obtain: 

 | σ, z ∼ N ( μ, λ) (6) 

here 

= M ( x , z ) and λ = M 

T ( x , z ) σ 2 M ( x , z ) + σ 2 
e I (7) 

inally we denote θ = ( z , σ ) as the parameter to be calibrated and

he likelihood can be written as: 

p( d | θ) = 

1 √ 

(2 π) N d | λ| exp 

(
−1 

2 

δ
T 
λ−1 δ

)
(8) 

here N d is the dimension of the experimental observation, | λ|

epresents the determinant of λ, and δ = d − M ( x , z ) . 

.3. Bayesian calibration and posterior model check 

After constructing the stochastic model, we can carry out

he calibration process with the likelihood function calculated by

q. (8) and also an appropriate prior proposed based on the prior

nowledge of the model parameters. Here we use the uniform dis-

ribution for all the model parameters and parameter range is dis-

ussed in detail in Section 6.1 . For sampling we employ an adaptive
etropolis-Hastings MCMC sampler [25] , as implemented in the

 [26] package MHadaptive [27] . The posterior density function is

pproximated by the simple kernel estimation. After calibration, a

odel check is carried out, which involves propagation of the pa-

ameter posterior through the model to obtain the distribution of

he QoIs. The Bayesian prediction involves the same procedure, but

ith a new unobserved case specification. For simplicity, the sam-

les obtained in the calibration step are reused in the model check

tep. 

. Surrogate model construction 

With the prior distribution specified by the modeler and the

ikelihood function calculated by Eq. (8) , we can recast Eq. (2) as: 

p( θ| d ) ∝ 

1 √ 

(2 π) N d | λ| exp 

(
−1 

2 

δ
T 
λ−1 δ

)
p( θ) (9) 

hen an MCMC sampling is employed to obtain samples from the

osterior. This procedure involves a large number of evaluations

f M ( x , z ) , which is computationally prohibitive. Thus the con-

truction of a surrogate model for the forward problem is usually

eeded. In this work, we employ the high dimensional model rep-

esentation technique (HDMR) to decompose the original moder-

tely high dimensional problems into several subproblems, which

re solved by the stochastic collocation method based on general-

zed polynomial chaos (gPC). The resulting surrogate model is then

sed for the Bayesian inference in inverse problems. The novelties

f this work are: (1) the combination of the gPC-based SC method

nd the HDMR technique, which is inspired by Ma and Zabaras

21] ; (2) the application of the so-constructed surrogate model to

ayesian inverse problems, inspired by the work of Marzouk and

iu [24] . 

.1. Stochastic collocation method based on gPC 

In this section we describe the stochastic collocation method

ased on generalized polynomial chaos, following the work of Mar-

ouk and Xiu. The interested reader may refer to [24] for further

etails. 

In the gPC-based stochastic collocation method, M ( z ) (we omit

he explanatory variable x hereafter for brevity) is approximated

y: 

˜ 
 N p ( z ) = 

N p ∑ 

| i | =0 

˜ a i �i ( z ) (10) 

here i = (i 1 , . . . , i n z ) is the multi-index with n z = dim ( z ) , | i | =
 1 + i 2 + . . . + i n z , and the orthogonal basis functions �i ( z ) is de-

ned as: 

i ( z ) = φi 1 (z 1 ) . . . φi n z 
(z n z ) (11) 

here φm 

( z k ) is the m th degree one-dimensional normalized or-

hogonal polynomial in the z k direction, with the corresponding

olynomial type determined by the distribution p ( z k ). And 

˜ 
 i = 

Q ∑ 

m =1 

M ( z (m ) )�i ( z 
(m ) ) ω 

(m ) (12) 

here { z (m ) } are the nodal set at which we need to evaluate the

odel output and ω 

( m ) is the corresponding weights of the cu-

ature rules. A detailed discussion of determining the polynomial

ype and the corresponding weight can be found in Ref. [28] . Here

n our work the Smolyak algorithm [29] based on one-dimensional

lenshaw-Curtis quadrature rule is employed and the R package

PC [30] is used for constructing the polynomials and evaluating

he corresponding ω 

( m ) . It is to be noted that to evaluate the surro-

ate ˜ M N p ( z ) , only Q code runs are required and the computational

urden is greatly reduced. 
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Fig. 1. The results by using the exact model. Only the posteriors of the first three most important dimensions are shown. The points in the figure represent the true values 

of the parameters. 

Table 1 

The number of code runs required, for sparse grid based 

on Smolyak algorithm [29] , with various parameter di- 

mensions N z and sparse grid levels l . 

l = 2 l = 3 l = 4 l = 5 l = 6 

N z = 2 5 13 29 65 145 

N z = 3 7 25 69 177 441 

N z = 4 9 41 137 401 1105 

N z = 5 11 61 241 801 2433 

N z = 6 13 85 389 1457 4865 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M  

f

 

i

M

 

) 

) 

H  

o  

2  

r  

r  

t  

R

M  

w  

u  

c  

f

∫
 

3.2. High dimensional model representation 

The use of gPC-based stochastic collocation method can reduce

the number of code runs greatly, provided that the input dimen-

sion is low. The so-called curse-of-dimensionality results in an ex-

ponential increase in the required number of runs with dimension,

leading to a computational bottleneck for high dimensional prob-

lems. The number of the code runs required is shown in Table 1

for Smolyak sparse grid [29] , as a function of parameter dimen-

sion and sparse grid level. As can be seen, even for a moder-

ately high dimensional problem, e.g. l = 4 and N z = 6 , 389 code

runs are needed, which demands great computational efforts. Thus

we employ the high dimensional model representation technique

(HDMR) to decompose the original moderately high dimensional

problems into several subproblems with lower dimension to fur-

ther reduce the number of code runs. The adaptive high dimen-

sional stochastic model representation technique (HDMR) proposed

by Ma and Zabaras is employed and a brief description of this

technique is given here. The derivation below follows closely from
aand Zabaras and the interested reader may refer to Ref. [21] for

urther details. 

The high dimensional stochastic model representation of M ( z )

s defined as: 

 ( z ) = f 0 + 

N z ∑ 

i =1 

f i (z i ) + 

∑ 

1 ≤i 1 <i 2 ≤N z 

f i 1 i 2 (z i 1 , z i 2 ) + . . . 

+ 

∑ 

1 ≤i 1 < ... <i s ≤N z 

f i 1 ... i s (z i 1 , . . . , z i s ) + . . . + f 1 , 2 , ... ,N z (z 1 , . . . , z N z

(13

ere the zeroth-order term f 0 represents the mean effects, the 1st-

rder term f i ( z i ) the effects of the individual input parameter z i , the

nd-order term f i 1 i 2 (z i 1 , z i 2 ) the correlation effects of the input pa-

ameter z i 1 and z i 2 . And the higher order terms represent the cor-

esponding correlation effects of the underlying multiple parame-

ers. The Eq. (13) can be written in a more compact form, as in

efs. [21,31] : 

 ( z ) = 

∑ 

u ⊂D 

f u (z u ) (14)

here D = { 1 , 2 , . . . , N z } , f u (z u ) = f i 1 ... i s (z i 1 , . . . , z i s ) for

 = { i 1 , i 2 , . . . , i s } and by convention f ∅ (z ∅ ) = f 0 . Then the

omponent functions are determined by minimizing the error

unctional: 

 

[ 

M ( z ) −
∑ 

u ⊂{ 0 , 1 , ... ,s } 
f u (z u ) 

] 2 

dμ( z ) (15)
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Fig. 2. The relative weights of each dimension, calculated with l = 5 . 
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here 0 ≤ s ≤ N z . The measure dμ( z ) determines the corresponding

rojection operator: 

 u M ( z ) = 

∫ 
M ( z ) dμD\ u ( z ) (16) 

here dμD\ u ( z ) = 

∏ 

i ∈ D,i 	∈ u dμi (z i ) with d μi ( z i ) the marginal den-

ity of z i . Thus minimizing functional (15) results in : 

f u (z u ) = P u M ( z ) −
∑ 

v � u 

f v (z v ) (17) 

nd it can be easily verified that the resulting component func-

ions are orthogonal with the inner product defined by the mea-

ure dμ( z ) . 

The measure dμ( z ) remains to be determined to obtain the

omponent functions. To avoid the integral evaluation in Eq. (16) ,

he measure dμ( z ) is simply chosen as 
∏ N z 

i =1 
δ(z i − z̄ i ) in the CUT-

DMR approach, where { ̄z i } is the reference point. Thus the pro-

ection operator becomes: 

 u M ( z ) = M ( z ) | z = ̄z \ z u (18) 

nd the component functions of the CUT-HDMR can be obtained

s: 

f 0 = M ( ̄z ) , f i (z i ) = M ( ̄z 1 , . . . , z i , . . . , ̄z N z ) − f 0 

f i, j (z i , z j ) = M ( ̄z 1 , . . . , z i , . . . , z j , . . . , ̄z N z ) − f i (z i ) − f j (z j ) − f 0 

(19) 

hus finally M ( z ) can be obtained from Eqs. (14) and (19) as: 

 ( z ) = 

∑ 

u ⊂D 

f u (z u ) = 

∑ 

u ⊂D 

∑ 

v ⊂u 

(−1) | u |−| v | M (z v ) | z = ̄z \ z v (20) 

he integration of HDMR and gPC-based SC comes straightforward

rom Eqs. (20) and (10) : 

 ( z ) ≈ M S ( z ) = 

∑ 

u ⊂D 

∑ 

v ⊂u 

(−1) | u |−| v | ˜ M N p (z v ) | z = ̄z \ z v (21) 

nstead of truncating the Eq. (21) to a certain order for all the di-

ensions, the adaptive HDMR proposed by Ma and Zabaras first

dentifies the important dimensions, then only the correlations of

he important dimensions are considered. The weight of each di-

ension is defined as: 

i = 

‖ J { i } ‖ L 2 

‖ J ∅ ‖ L 2 

(22) 

here 

 u = 

∑ 

v ⊂u 

(−1) | u |−| v | E[ ˜ M N p (z v ) | z = ̄z \ z v ] (23) 

nd the L 2 norm is defined in the model output space. A prede-

ned error threshold ε1 is needed to identify the important di-

ension. Similar dimension adaptivity is extended to high order

orrelation terms, as: 

u = 

‖ J u ‖ L 2 

‖ 

∑ 

v ∈ S , | v | < | u | J v ‖ L 2 

(24) 

here S is the set of index whose component function has al-

eady been computed. Only the term f u (z u ) with a weight ηu 

reater than the threshold ε1 is kept and we put all the corre-

ponding index u into a set T . Then for higher order terms, only

omponent functions f u (z u ) where u satisfies the admissibility re-

ation (25) , are calculated. 

 ∈ T and v ⊂ u ⇒ v ∈ T (25) 

urther a relative error ρ between two consecutive orders p and

p − 1 is defined as: 

= 

‖ 

∑ 

v ∈ T , | v |≤p J v −
∑ 

v ∈ T , | v |≤p−1 J v ‖ L 2 

‖ 

∑ 

v ∈ T , | v |≤p−1 J v ‖ L 2 

(26) 

 threshold ε2 is predefined to decide whether the adaptive HDMR

onstruction process is converged. 
.2.1. The weight of each dimension 

The combination of the HDMR technique and gPC-based SC

ethod can be applied in forward problems without modification,

ut in inverse problems the determination of the weight should be

odified. One should note that the weight of each dimension de-

ermined by Eqs. (22) and (23) is an indicator of the impact of the

orresponding input parameter on the output mean, thus a faster

onvergence and a smaller error in terms of the output mean can

e achieved, as demonstrated in Ref. [21] . But for inverse problems,

he input parameters that can be well informed are the ones the

odel output is sensitive to, as demonstrated in Ref. [7] for the

nference of the model parameter in k − ε turbulence model. Thus

n this work, for inverse problems, the relative weight of each di-

ension is determined by: 

i = 

‖ J { i } ‖ L 2 ∑ N d 
i =1 

‖ J { i } ‖ L 2 

(27) 

here 

 u = var [ f u (z u )] = var 

[∑ 

v ⊂u 

(−1) | u |−| v | ˜ M N p (z v ) | z = ̄z \ z v 
]

(28) 

imilarly the relative importance for the high order correlation

erms is defined as: 

u = 

‖ J u ‖ L 2 ∑ 

| v | = | u | ‖ J u ‖ L 2 

(29) 

here J u is defined as in Eq. (28) . The relative error ρ is expressed

s: 

= 

‖ var [ 
∑ 

v ∈ T , | v |≤p f u (z u )] − var [ 
∑ 

v ∈ T , | v |≤p−1 f u (z u )] ‖ L 2 

‖ var [ 
∑ 

v ∈ T , | v |≤p f u (z u )] ‖ L 2 

(30) 

. Algorithm summary 

In this section, we summarize the Bayesian uncertainty quan-

ification approach that we proposed above. The convergence study

f the proposed approach can be found in Appendix A . 

emark. As the sparse nodal set is nested, every model evaluation

n the previous level can be used in the subsequent calculations,

endering the current approach very efficient. 
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Algorithm 1 The proposed uncertainty quantification approach. 

1: Identify the model input-output mapping M ( z ) and collect the 

corresponding experimental data d . Specify the prior p( z ) . 

2: Set the set A i = ∅ as the set of the nodes where the model 

evaluation has been done and B i = ∅ as the set of correspond- 

ing model output. Set sparse grid level l, the gPC order N p = 

l − 1 . 

3: repeat 

4: Construct adaptively the HDMR surrogate model M 

N p 
S 

( z ) of 

M ( z ) with each subproblem solved with gPC-based SC of order 

N p . In this procedure model evaluations are carried out only for 

the nodes that are not in A i . Add the evaluated nodal points z e 
into A i and store the corresponding M (z e ) into B i . 

5: Construct the stochastic model to obtain the likelihood 

p( d | z ) and combine with the prior p( z ) to obtain the poste- 

rior p( z | d ) through Bayes’ rule. 

6: l ← l + 1 , N p ← l − 1 

7: until the posterior converges. 

8: The posterior is forward propagated through the surrogate 

model M S ( z ) to obtain the model output with quantified un- 

certainty. 
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5. Application to a simple mathematical function 

Here we apply the proposed approach to a simple mathemat-

ical function to demonstrate its accuracy and efficiency. The pro-

posed approach is expected to have great advantage in strongly

anisotropic cases, thus we propose the following function, inspired

by the Example 3 in Ref. [21] : 

M ( z ) = 

(
1 + α11 z 11 

1 + 

∑ 10 
i =1 αi z i 

, 
1 + α11 z 11 

1 − ∑ 10 
i =1 αi z i 

)
(31)

where αi = 

0 . 1 
10 i −1 for i = 1 , . . . , 10 and α11 = 0 . 1 . The prior distribu-

tion of each model parameter is assumed as: 

z i = U (−1 , 1) for i=1,...,11 (32)

The model inadequacy term is neglected and the posterior is ex-

pressed as: 

p( z | d ) ∝ 

1 √ 

(2 π) N d | λ| exp 

(
−1 

2 

δ
T 
λ−1 δ

)
p( z ) (33)

where the dimension of the experimental observation N d = 2 and

λ = diag(σ 2 
e ) where σe = 0 . 005 . Here the experimental observation

is artificially generated by: 

d = M ( z exact ) + e (34)

where z exact i 
= 0 . 3 for i = 1 , .., 11 and e i ∼ N (0 , σe ) for i = 1 , 2 .

Five experimental observations so-generated are used in the re-

sults presented in this paper. To obtain the posterior distribution,

3 × 10 5 MCMC samples are generated, which are enough to guar-

antee the convergence of the MCMC chains. The “burn-in” length

is set to 10 4 . First the posterior is obtained by using the exact

model M ( z ) and the results are shown in Fig. 1 . Here we only

show the posterior of the parameter z 1 , z 2 , z 11 , as all the other pa-

rameters have little impact on the model output and thus haven’t

been well informed. As can be seen, z 1 and z 11 are well informed

and z 2 remains almost the same as its prior. The results by using

the surrogate model constructed following Algorithm 1 are shown

in Figs. 2 and 3 , with sparse grid level from 2 to 5. The weights

of each dimension calculated with different grid levels are almost

the same and only the weights calculated with l = 5 are given in

Fig. 2 . As can be seen, z 1 and z 11 are the first two most important

dimensions and account for 99.5% of the total variance of the first

order terms, thus only f 0 , f 1 ( z 1 ), f 11 ( z 11 ), f (1, 11) ( z 1 , z 11 ) are included
n the HDMR of M ( z ) . Then each subproblem is solved with a fix-

rder gPC-SC method, and the results are shown in Fig. 3 . As can

e seen, l = 3 is sufficient to capture the corresponding posterior.

he Maximum A Posteriori (MAP) values are very close to the exact

alues of the parameters. However, a discrepancy of the posterior

f z 1 is observed between the results of exact model and surrogate

odel. This is due to the neglect of the other model parameters,

.e. z 2 , which are strongly correlated with z 1 , as can be seen from

ig. 1 . Further inclusion of terms in the HDMR will result in a bet-

er comparison with the posterior obtained with the exact model,

s can be seen from Fig. 4 . 

To be noted, here the reference values used in CUT-HDMR z̄ is

ero, which is different from its exact value 0.3. This is done on

urpose to demonstrate the ability of the present approach even

hen the nominal values of the model parameters aren’t optimal,

s is often encountered in practical situations. It is also worth not-

ng that if the weight of each dimension is determined by the im-

act of the corresponding input parameter on the output mean,

 11 will be neglected, which is in fact one of the most important

imensions. After successfully testing the proposed approach with

his simple mathematical function, we apply it to a complex and

ime-consuming computer model, i.e., k- ω − γ transition model,

xpecting to improve the prediction mean and also obtain the cor-

esponding quantified uncertainty. 

. Application to k - ω- γ transition modeling 

.1. Transition model formulation 

In this section, the k - ω- γ transition model proposed by Fu and

ang is briefly described. The interested reader may refer to Ref.

1] for further details. 

This model is based on a k - ω- γ three-equation eddy-viscosity

oncept with k representing the fluctuating kinetic energy, ω the

pecific dissipation rate and γ the intermittency factor. The equa-

ions are formulated as: 

∂(ρk ) 

∂t 
+ 

∂(ρu j k ) 

∂x j 
= 

∂ 

∂x j 

[(
μ + 

μe f f 

σk 

)
∂k 

∂x j 

]
+ P k (μe f f ) − ε (35)

∂(ρω) 

∂t 
+ 

∂(ρu j ω) 

∂x j 
= 

∂ 

∂x j 

[(
μ + 

μe f f 

σω 

)
∂ω 

∂x j 

]
+ P ω − D ω + Cd ω 

(36)

∂(ργ ) 

∂t 
+ 

∂(ρu j γ ) 

∂x j 
= 

∂ 

∂x j 

[(
μ + 

μe f f 

σγ

)
∂γ

∂x j 

]
+ P γ (F onset ) − εγ

(37)

ere the effective viscosity μeff is the weighted sum of the non-

urbulent part and the turbulent part, i.e. : 

e f f = (1 − γ ) μnt + γμt (38)

he non-turbulent part μnt can be further expressed as: 

nt = C 6 × ρ̄kτnt (39)

ere τ nt represents the characteristic timescale in the flow tran-

ition, as associated with different instabilities including 1st Mack

ode, 2nd Mack mode etc. In this work we consider only the 1st

ack mode and 2nd Mack mode and the timescale is formulated

s: 

nt = τnt1 + τnt2 × 1 

2 

[1 + sgn (M rel − 1)] (40)

here τnt1 = C 4 × ξ 1 . 5 
e f f 

/ [(2 E u ) 0 . 5 ν] 0 . 5 , τnt2 = C 5 × 2 ξe f f /U(y s ) , and

 rel = (U − c r ) /a . The effective length scale ξ eff is set as: 

e f f = min (C 1 × ξ , C 2 × l t , C 3 × l B ) (41)
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Fig. 3. The results by using the surrogate model constructed following Algorithm 1 , z 1 , z 11 included as important dimensions. The points in the figure represent the true 

values of the parameters. 
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here the boundary layer length scale ξ = d 2 �/ (2 E u ) 0 . 5 , the tur-

ulence length scale l t = k 0 . 5 /ω, the length scale bound to avoid

tagnation point anomaly l B = k 0 . 5 / (C 6 | S| ) . Moreover, the intermit-

ency production and dissipation term are modeled as: 

 γ = C 9 × ρF onset [ −ln (1 − γ )] 0 . 5 

( 

1 + C 8 ×
√ 

k 

2 E u 

) 

d 

ν
| � E u | , 

εγ = γ P γ (42) 

here the function F onset is given by: 

 onset = 1 . 0 − exp 

(
−C 7 ×

ξe f f k 
0 . 5 | � k | 

ν| � E u | 
)

(43) 

s can be seen, there are totally 9 parameters in this transition

odel, without counting the parameters of the underlying k − ω
urbulence model. Before carrying out the Bayesian calibration, we
an argue that there is a degree of redundancy between C 1 , C 5 
nd C 6 in determining the characteristic timescale τ nt , as the 2nd

ach mode is dominant in this model for hypersonic flows. Thus

e fix C 1 and C 6 to their nominal values in the subsequent simula-

ions. Furthermore, we also fix C 4 to its nominal value, which was

alibrated against the incompressible flow cases. To calibrate the

odel parameters ( C 2 , C 3 , C 5 , C 7 , C 8 , C 9 ), denoted as z , we should

t first specify their prior distributions. Here in this work, we per-

urb the parameters’ nominal value by ± 10% to obtain the prior

ange and use the uniform distributions for all the parameters. The

ange of perturbation ( ± 10%) is determined by trial and error, in

rder to guarantee the convergence of the calculations. However, it

s observed that transition can’t be triggered in certain parameter

onfigurations, so we further narrow the prior range of the corre-

ponding parameters in order to put the design points in the nar-

owed stochastic domain, thus improving the accuracy of approxi-

ating the true response surface in the domain we are interested

n. The final prior range is reported in Table 2 . 
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Fig. 4. The results by using the surrogate model constructed following Algorithm 1 , z 1 , z 2 , z 11 included as important dimensions. The component functions f 0 , f 1 ( z 1 ), f 2 ( z 2 ), 

f 11 ( z 11 ), f (1, 11) ( z 1 , z 11 ) are included in the HDMR of M( z ) (sparse grid level l = 5 ). The points in the figure represent the true values of the parameters. 

Fig. 5. The computational domain and the final mesh. 

Fig. 6. The results including both the relative weights and the posteriors, with the sparse grid level l = 2 . The points in figure (b) represent the nominal values of the 

parameters. 
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Fig. 7. The results including both the relative weights and the posteriors, with the sparse grid level l = 3 . The points in figure (b) represent the nominal values of the 

parameters. 

Fig. 8. The results including both the relative weights and the posteriors, with the sparse grid level l = 4 . The points in figure (b) represent the nominal values of the 

parameters. 

Table 2 

The prior range for model parameters and the 

hyper-parameter σ . 

Coefficient Left boundary Right boundary 

C 2 6300 7700 

C 3 0.54 0.66 

C 5 2.26 2.46 

C 7 3.3 3.5 

C 8 0.063 0.077 

C 9 437.4 534.6 

σ 0 0.5 
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.2. Numerical methods and grid generation 

All the numerical simulations are carried out in our in-house

hree-dimensional compressible Navier-Stokes solver. The com- 

ressible Navier-Stokes equations are solved with Roe’s implicit,

nite volume, upwind algorithm. By means of the monotone

pstream-centered schemes for conservation laws interpolation of

he primitive variables, the quantity in the inviscid fluxes is ob-

ained. The viscous flux terms are calculated by a second-order

entral difference scheme. Lower Upper Symmetric Gauss Seidel

LU-SGS) scheme is used for temporal integration. The no-slip, con-

tant wall temperature conditions are imposed. The mesh indepen-

ence study has been carried out and the final mesh used in this

ork is shown in Fig. 5 . The grid dimension is 401 × 231 and the
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Fig. 9. The posterior of σ , with the sparse grid level l = 4 . 

Fig. 10. The posterior distribution of M S ( C ) , the non-dimensional heat flux coeffi- 

cient along the streamwise direction without including the model inadequacy term 

η. The experimental data (Shot 6912 and 6913) is plotted with the 3 σ error bar. 

 

 

 

 

 

 

 

 

 

Fig. 11. The posterior distribution of M S ( C )(1 + η) , the non-dimensional heat flux 

coefficient along the streamwise direction including the model inadequacy term η. 

The experimental data (Shot 6912 and 6913) is plotted with the 3 σ error bar. 

Table 3 

The flow condition corresponding to the experimen- 

tal setup (Shot 6912 and Shot 6913 [32] ). 

Ma ∞ T ∞ P ∞ Re ∞ / m T w 

6.1 800 K 12.1 kPa 4.9 × 10 6 300 K 
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near wall grid spacing is 5 × 10 −7 m, making y + = 0 . 1 at the end of

the plate. 

6.3. Specification of the flow class and QoIs 

In this work, we are interested in the hypersonic boundary

layer transition over a flat plate with a relatively low inlet turbu-

lent intensity. The QoIs are the non-dimensional heat flux (Stan-

ton number) along the streamwise direction, characterized by a

steep rise across the transition region, as can be seen in Fig. 10 .

The input-output mapping can thus be denoted as M ( C ) with C =
(C 2 , C 3 , C 5 , C 7 , C 8 , C 9 ) . The experimental data from Mee [32] (Shot

6912 and Shot 6913) is used in the current investigation to demon-
trate the ability of the present approach to quantify the uncer-

ainty efficiently and rigorously. The flow condition correspond-

ng to this experimental setup is reported in Table 3 . Here in this

ork only experimental data near the transition region is used and

he measurement error is estimated as zero-mean gaussian with

e = 3 × 10 −5 . More experimental data over different working con-

itions should be included to inform the model and validate the

odel through cross validation. Further, the parameter variability

cross scenarios is believed to be large, thus will result in a large

ncertainty in the prediction of QoIs. Whether to accept or re-

ect the underlying model is up to the decision makers’ require-

ent for the prediction precision, which is out of the scope of this

aper. 

.4. Results 

The stochastic model is constructed following Section 2.2 , with

he prior of the model parameters described in Section 6.1 . The

rior for the hyper-parameter σ is also chosen as uniform distri-

ution and the corresponding range is also reported in Table 2 .

 × 10 5 MCMC samples are generated to estimate the posterior dis-

ributions, with a burn-in length of 10 4 . The results are shown in

igs. 6–8 , including both the relative weights and the posteriors,

ith the sparse grid level from 2 to 4. As can be seen, C 5 and

 9 are the first two most important dimensions and account for

ver 90% of the total variance of the first order terms, thus only f 0 ,

 5 ( C 5 ), f 9 ( C 9 ), f (5, 9) ( C 5 , C 9 ) are included in the HDMR of M ( C ) . The

osteriors are almost the same for l = 3 and l = 4 , indicating gPC-

C method with grid level l = 4 is sufficient in this case. The model

arameters are well informed, especially C 5 . And the correlation

etween C and C is weak, which may indicate C and C capture
5 9 5 9 
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Fig. 12. The details of the MCMC samples of Stanton number at different streamwise locations, without the inadequacy term η. The samples are obtained by extracting the 

original MCMC samples with un interval of 10 0 0. 
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consistent or not is hard to determine. 
he different aspects of the transition process. This is in accordance

ith the idea behind the design of the transition model. Specifi-

ally, C 5 has a great impact on the growth of the 2nd mode, which

etermines the onset of transition through F onset , while C 9 is the

ultiplicative coefficient of the production term P γ , which deter-

ines the growth rate of the intermittency coefficient γ , hence has

 great impact on the length of the transition zone. The posterior

istribution of σ is given in Fig. 9 . The inadequacy term is quite

arge and it may be due to the inability of the transition model

nd the underlying SST turbulence model to fit the experimental

ata. 

The posterior model check is done by propagating the param-

ter uncertainty through the surrogate, which is constructed in

he same way as in the Bayesian calibration step. The results are

hown in Figs. 10 and 11 , with and without including the model

nadequacy term η respectively. The results for the nominal val-

es and Maximum A Posteriori (MAP) values are also shown for

omparison. As can be seen, the match between the prediction

ean and the experimental data is much better than the nominal

ne, indicating a successful calibration. The 90% confidence inter-

al overlaps quite well with the experimental data, indicating the

utput uncertainty can be well captured by the parameter uncer-

ainty. 

It is also interesting to note that the prediction mean matches

ith experimental data better than the MAP calculation. This is

ecause the intermittency of transition to turbulence is also ac-

ounted for by the spread of the model parameters. Specifically,

he intermittency factor γ of the transition model is based on

he physical observation that at a fixed location of the transitional
one, the flow remains laminar for a portion of time and turbu-

ent for another portion of time. Thus the intermittency factor is

efined as the proportion of time that the flow remains turbu-

ent. The intermittency factor values from 0 to 1 and is directly

odeled in the k - ω- γ transition model, but it is further accounted

or by the spread of model parameters, i.e. at a fixed location, the

ow remains laminar for a certain parameter setup and it becomes

urbulent for another set of parameters. Thus the use of probabil-

ty distribution for model parameters somehow mimics the chaotic

r pseudo-stochastic behavior of flow transition. Similarly, in Ref.

33] , Serino et al. combined the e N method with uncertainty quan-

ification to capture the intermittency factor γ as the probability

f transition, by assuming a probability distribution for the fre-

uency and the propagation angle of the oblique waves. It is also

orth noting that the experimental data for heat flux is obtained

lso by averaging the measurement over a period of time, dur-

ng which the flow switches between laminar and turbulent fre-

uently. Fig. 12 gives the details of the MCMC samples of Stan-

on number at different streamwise locations. The samples are ob-

ained by subsampling the original MCMC chain with an interval

f 10 0 0. The spread of the Stanton number is much greater af-

er transition onset and the intermittency-like behavior becomes

ore clear if we also include the inadequacy term, as is shown

n Fig. 13 . 

The results for other quantities can also be obtained, with quan-

ified uncertainty. Here in Fig. 14 we give the friction drag coeffi-

ient along the streamwise direction, without including η. There is

o experimental data available thus whether the results for C f is
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Fig. 13. The details of the MCMC samples of Stanton number at different streamwise locations, with the inadequacy term η. The samples are obtained by extracting the 

original MCMC samples with un interval of 10 0 0. 
Fig. 14. The posterior friction drag coefficient along the streamwise direction, with- 

out the model inadequacy term η. 
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. Conclusion 

In this paper, an efficient Bayesian uncertainty quantification

pproach is proposed, and its efficiency and accuracy are demon-

trated with application to both a simple mathematical function

nd a complex fluid dynamic model, i.e. k - ω- γ transition model.

he uncertainty quantification framework follows closely from

hueng et al. [5] . To avoid the formidable number of model eval-

ations in the sampling procedure, a surrogate model construction

ethod is proposed, combining the powerful adaptive high dimen-

ional stochastic model representation (HDMR) technique [21] and

tochastic collocation (SC) method based on generalized polyno-

ial chaos (gPC) [24] . Specifically, the exact model is approxi-

ated by high dimensional model representation, with each com-

onent function adaptively chosen based on the relative impor-

ance, then each subproblem is solved by gPC-based SC method. In

his work, the importance indicator is defined based on the vari-

nce of the corresponding output, rather than the impact on the

utput mean. This is reasonable because the input parameters that

an be well informed are the ones the model output is sensitive to.

urther, a rigorous convergence study of the approximate posterior

o the true posterior is carried out in terms of Kullback–Leibler

ivergence, with increasing gPC order and HDMR truncation

rder. 

The application of the proposed method to the k - ω- γ transi-

ion model is carried out and the results show not only a quanti-

ed uncertainty overlapping with the experimental data, but also

 great improvement of the match between the prediction mean

nd the experimental data. The prediction mean results are even
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etter than the Maximum A Posteriori (MAP) estimates, which can

e explained by the further account of the intermittency effect of

he transition process through the spread of the input parameters.

n terms of efficiency, only 65 code runs are done in the calibra-

ion procedure, comparing the 389 code runs for gPC and ten of

housands code runs for direct model evaluations. 

The current investigation only includes one experimental set-

p, thus can be used only in a limited number of flow config-

rations. However, the sensitivity analysis for the model parame-

ers can still provide valuable information for the modeler to ap-

reciate the underlying model. Further work will involve the in-

lusion of more experimental data or direct numerical simulation

DNS) data for model updating. A more physics-based stochas-

ic model construction is also needed to well capture the model

nadequacy. 

ppendix A. Convergence study 

The convergence of the proposed approach is proved below, fol-

owing the work of Refs. [21,24] . In Theorem 1 , the convergence

f the surrogate model to the true model output is proved. Then

he convergence of posterior obtained with the surrogate model is

roved in terms of the Kullback–Leibler divergence in Theorem 2,

ollowing the similar procedure of the proof of Lemma 4.2. in Ref.

24] . 

heorem 1. Let S = S N t ,N s the set of indices that the corresponding

omponent functions are included in the high dimensional model rep-

esentation, where N t , N s are the corresponding superposition and

runcation dimensions. Let ˜ M N p (z v ) | z = ̄z \ z v the gPC-SC approximation

ith the same polynomial order and the same sparse grid level for

ll the subproblems. Then the surrogate model is constructed as:

 S ( z ) = 

∑ 

u ∈ S 
∑ 

v ⊂u (−1) | u |−| v | ˜ M N p (z v ) | z = ̄z \ z v . If the L 2 error of the

PC approximation of all the subproblems are denoted as ε and the

runction error denoted as εt , i.e.: 

 M (z v ) | z = ̄z \ z v − ˜ M N p (z v ) | z = ̄z \ z v ‖ L 2 
p( z ) 

≤ ε (A.1) 

 M ( z ) − M N t ,N s | ≤ εt (A.2) 

here M N t ,N s = 

∑ 

u ∈ S 
∑ 

v ⊂u (−1) | u |−| v | M (z v ) | z = ̄z \ z v , then: 

 M ( z ) − M S ( z ) ‖ L 2 
p( z ) 

≤ εt + c(N s , N t ) ε (A.3) 

or all M ( z ) ∈ L 2 space with the inner product induced by p( z ) . 

roof. 

 M ( z ) − M S ( z ) ‖ 

2 
L 2 

p( z ) 

= 

∫ 
[(M ( z ) − M N t ,N s ) 

2 + (M N t ,N s − M S ) 
2 

+ 2(M ( z ) − M N t ,N s )(M N t ,N s − M S ( z ))] p( z ) d z (A.4) 

lso: 
 

(M ( z ) − M N t ,N s ) 
2 p( z ) d z ≤ ε2 

t (A.5) 

 

(M N t ,N s − M S ) 
2 p( z ) d z 

= 

∫ [ ∑ 

u ∈ S 

∑ 

v ⊂u 

(−1) | u |−| v | (M (z v ) − ˜ M N p (z v )) 

] 2 

p( z ) d z 

≤
∫ ( ∑ 

u ∈ S 

∑ 

v ⊂u 

| M (z v ) − ˜ M N p (z v ) | 
) 2 

p( z ) d z 

≤
∫ 

C 2 1 max 
i, j 

(| M (z v i ) − ˜ M N p (z v i ) || M (z v j ) − ˜ M N p (z v j ) | ) p( z ) d z 
≤ C 2 1 max 
i, j 

‖ M (z v i ) − ˜ M N p (z v i ) ‖ L 2 z 
‖ M (z v j ) − ˜ M N p (z v j ) ‖ L 2 z 

≤ C 2 1 ε
2 (A.6) 

 

(M ( z ) − M N t ,N s )(M N t ,N s − M S ( z )) p( z ) d z 

≤ ‖ M ( z ) − M N t ,N s ‖ L 2 
p( z ) 

‖ M N t ,N s − M S ( z ) ‖ L 2 
p( z ) 

≤ C 1 εεt (A.7) 

here C 1 = 

∑ N s 
k =1 

(
N t 
k 

)∑ k 
j=1 

(
k 

j 

)
≤ 2 N s +1 N 

N s 
t . 

Thus from Eqs. (A .4) –(A .7) we obtain: 

 M ( z ) − M S ( z ) ‖ L 2 
p( z ) 

≤ εt + C 1 ε (A.8) 

�

emark. The theorem is formulated for the scalar model out-

ut. The application to a vector model output can be written as:

 M i ( z ) − M S i 
( z ) ‖ 

L 2 
p( z ) 

≤ εt + c(N s , N t ) ε. 

heorem 2. Assume the stochastic model is constructed as Eq.

6) , then L ( θ) = 

1 √ 

(2 π) N d | λ| 
exp (− 1 

2 δ
T 
λ−1 δ) and posterior p( θ| d ) =

L ( θ) p( θ) ∫ 
L ( θ) p( θ) d θ

with δ = d − M ( z ) , λ is given by Eq. (7) , and θ = ( z , σ ) .

f the surrogate model M S ( z ) converge to M ( z ) in the L 2 sense, i.e. 

 M i ( z ) − M S i ( z ) ‖ L 2 p z 
→ 0 , ε → 0 , εt → 0 for 1 ≤ i ≤ N d (A.9) 

hen: 

 (p d S ( θ) ‖ p d ( θ)) → 0 , ε → 0 , εt → 0 (A.10) 

here N d is the dimension of the model output, the superscript d

epresents the posterior conditioned on d , the subscript S represents

he replacement of the true model by the surrogate model, and the

ullback–Leibler divergence (KLD) is defined as: 

 (p 1 ‖ p 2 ) = 

∫ 
p 1 ( z ) log 

(
p 1 ( z ) 

p 2 ( z ) 

)
d z (A.11) 

roof. Let 

= 

∫ 
L ( θ) p( θ) d θ , γS = 

∫ 
L S ( θ) p( θ) d θ (A.12) 

hen γ > 0, γ S > 0. By following the definition of L ( θ) and L S ( θ),

nd utilizing the fact that e −x is Lipshitz continuous for x ≥ 0, i.e.

 e −x − e −y | ≤ �| x − y | for all x, y > 0, where � is a positive con-

tant. Then we have: 

 γS − γ | 
= 

∣∣∣∫ (L ( θ) − L S ( θ)) p( θ) d θ
∣∣∣

= 

∣∣∣∣∣
∫ 

1 √ 

(2 π) N d | λ| (e −
1 
2 δ

T 
λ−1 δ − e −

1 
2 δ

T 
S λ

−1 δS ) p( θ) d θ

∣∣∣∣∣
= 

∣∣∣∣∣
∫ N d ∏ 

i =1 

1 √ 

2 πσ 2 
t 

(e 
− 1 

2 σ2 
t 

(d i −M i ( z )) 
2 

− e 
− 1 

2 σ2 
t 

(d i −M S i 
( z )) 2 

) p( θ) d θ

∣∣∣∣∣
≤

N d ∏ 

i =1 

∫ 
1 √ 

2 πσ 2 
t 

| e −
1 

2 σ2 
t 

(d i −M i ( z )) 
2 

− e 
− 1 

2 σ2 
t 

(d i −M S i 
( z )) 2 | p( θ) d θ

≤
N d ∏ 

i =1 

∫ 
1 √ 

2 πσ 2 
t 

�

2 σ 2 
t 

| (d i − M i ( z )) 
2 − (d i − M S i ( z )) 

2 | p( θ) d θ

≤
N d ∏ 

i =1 

1 √ 

2 πσ 2 
e 

�

2 σ 2 
e 

‖ M i ( z ) − M S i ( z ) ‖ L 2 
p( z ) 

× ‖ 2 d i − M i ( z ) − M S i ( z ) ‖ L 2 
p( z ) 
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≤ C 1 

N d ∏ 

i =1 

‖ M i ( z ) − M S i ( z ) ‖ L 2 
p( z ) 

(A.13)

where we have assumed err i = exp [ − 1 

2 σ 2 
t 

(d i − M i ( z )) 
2 ] −

exp [ − 1 

2 σ 2 
t 

(d i − M S i 
( z )) 2 ] is mutually independent for each i

and the Hölder’s inequality has been used. 

Also we can derive: 

log 
p d S ( θ) 

p d ( θ) 
= − 1 

2 σ 2 
t 

N d ∑ 

i =1 

((d i − M S i ( z )) 
2 − (d i − M i ( z )) 

2 ) + log 
γ

γS 

(A.14)

Therefore, 

D (p d S ‖ p d ) = 

∫ 
p d S log 

(
p d S 

p d 

)
d θ

= 

1 

γS 

N d ∑ 

i =1 

∫ 
− 1 

2 σ 2 
t 

((d i − M S i ( z )) 
2 − (d i − M i ( z )) 

2 ) 

× L S ( θ) p( θ) d θ + log 
γ

γS 

(A.15)

Considering both γ and γ S are positive constants and L S ( θ) is

bounded, i.e. 0 < L S ( θ) ≤ C 2 , we can derive: 

D (p d S ‖ p d ) ≤ C 2 
γS 

1 

2 σ 2 
e 

N d ∑ 

i =1 

∫ 
| (d i − M S i ( z )) 

2 − (d i − M i ( z )) 
2 | p( θ) d θ

+ 

∣∣∣∣log 
γ

γS 

∣∣∣∣
≤ C 3 

γS 

1 

2 σ 2 
e 

N d ∑ 

i =1 

‖ M i ( z ) − M S i ( z ) ‖ L 2 
p( z ) 

+ 

∣∣∣∣log 
γ

γS 

∣∣∣∣ (A.16)

The first term converges by following Eq. (A.9) and the second

term by following Eq. (A.13) , thus the posterior obtained from the

surrogate model converges to the true posterior in the sense of

KLD convergence, i.e.: 

D (p d S ( θ) ‖ p d ( θ)) → 0 , ε → 0 , εt → 0 (A.17)

�
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