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Abstract. Accurate characterisation of wind turbine wakes is important for the optimal design
and operation of wind farms. However, current techniques for full-scale wind measurements are
still limited to point characterisation. To address the research challenge in obtaining field
characterisation of real-world wind turbine wakes, this work investigates the reconstruction
of the dynamic wake flow fields based on a virtual turbine-mounted Lidar and physics-
informed neural networks. Specifically, the wake flow field is reconstructed by fusing the sparse
measurements with the two-dimensional Navier-Stokes equations without imposing any models
for the unsteady wake. Different from supervised machine learning approaches which need the
measured values for the quantities of interest in the first place, the proposed method can achieve
the prediction of the wind velocity at new locations where there is no measurement available.
The reconstruction performance is evaluated via high-fidelity numerical experiments and it is
shown that the dynamic wind turbine wake flow fields are predicted accurately, where the main
wake features, including the downwind development and crosswind meandering of the wake,
are both captured. This work thus paves the way for investigating full-scale in situ wake flow
dynamics in real-world wind energy sites.

1. Introduction
Wind turbine wakes, i.e. the flow regions behind wind turbines where the wind speed is reduced
and the turbulence level is increased, are of great importance for the optimal design and operation
of wind farms. In order to investigate wake effects, a lot of works have been carried out,
ranging from physics-based wake modelling [1, 2, 3, 4], data-driven modelling [5, 6, 7], numerical
simulations [8, 9, 10], wind tunnel measurements [11, 12, 13], and field measurement campaign
[14, 15, 16]. While many works focus on the theoretical and numerical study of wind turbine
wakes, it is still extremely challenging to directly measure the wake flow fields in real-world
conditions. Detailed flow measurements, e.g. PIV measurements, can be achieved with model
wind turbines in a controlled wind tunnel environment. However, for full-scale wind energy sites,
flow field measurements are still limited to sparse spatial locations.

Remote sensing devices, such as turbine-mounted Lidars, are becoming more and more
popular for wind energy measurements [17, 18, 19]. They have the potential to provide richer
information than traditional wind speed anemometers. The use of Lidar measurements for
reconstructing flow fields in the wake regions has also been investigated recently. In [20], two



The Science of Making Torque from Wind (TORQUE 2024)
Journal of Physics: Conference Series 2767 (2024) 092017

IOP Publishing
doi:10.1088/1742-6596/2767/9/092017

2

separate Lidars were employed for predicting wake flow fields and the results showed that the
proposed method was able to predict the time-averaged wake flow fields accurately. In [21],
scanning Lidars were used for reconstructing steady wind turbine wake flow fields in 3D space,
and the results showed that the averaged flow fields were predicted accurately. In [22], the
3D dynamic wake flow fields were predicted, combining long-range Lidar and dynamic wake
models. In [23], the wake flow fields in the plane parallel to the turbine rotor were predicted and
then they were used for wind turbine load evaluations. The results showed that the main wake
features were predicted successfully while the Lidar’s resolution was not sufficient for power and
load assessments.

Most of the above works showed that more details regarding the wind turbine wake flow fields
can be obtained by combining data with physical knowledge (e.g. empirical models). However,
due to various assumptions, such as the steady flow assumption, the spatiotemporal variability of
the flow fields was constrained accordingly. To address the issue, in this work, the dynamic wake
flow field is reconstructed by fusing the measurements of a virtual turbine-mounted Lidar with
the two-dimensional Navier-Stokes equations, without analytically modelling the wake while at
the same time capturing the dynamic flow features. The employed data-physics fusion approach
is based on the physics-informed neural networks (PINNs) [24], which has seen great successes
since being proposed [25, 26]. For wind energy applications, PINNs have been employed for the
prediction of the freestream atmospheric boundary layer flow [27, 28] and wake interactions [29]
lately. This work aims to explore the power of PINNs and Lidar to reconstruct the complex
wind turbine wake flows.

The rest of the paper is organised as follows. The wake flow field reconstruction approach is
presented in Section 2, including the virtual Lidar setups, PINNs structures, and the numerical
simulation details. Then the results are given in Section 3, where the reconstructed flow fields
are compared with the corresponding ground truth and the wake profiles and effective wind
speeds are extracted for further analysis. Finally the conclusions are drawn in Section 4.

2. Methodology
The wake flow field is reconstructed based on the line-of-sight measurements by a virtual Lidar
and the two-dimensional Navier-Stokes (NS) equations via the PINNs approach. In particular,
this work focuses on the flow field at the turbine hub height. Therefore, the virtual Lidar is
designed to scan over the hub-height 2D plane and the objective of the reconstruction is to
retrieve the detailed flow fields in the wake regions at the hub height.

2.1. Lidar setups
The virtual Lidar device in this work, in terms of data frequency and measurement range, is
designed based on the product guide of the ZXTM Lidar developed by the ZXLidars [30]. As
this work focuses on the flow fields in the turbine hub-height 2D plane, the virtual Lidar device
is configured to carry out Plan-Position Indicator (PPI) scan, where multiple positions per laser
beam direction are measured simultaneously and the laser beam is set to scan horizontally
within the hub-height 2D plane. Such scan pattern is designed following previous works in the
literature [22]. Specifically, the measurement points are uniformly distributed along the laser
beam direction, from 25 m to 550 m with the distance between adjacent measurement points
as 35 m. This leads to a total of 16 measurement points per Lidar-staring direction. The PPI
scan is set to be carried out from -15 to 15 degrees, which is sufficient to cover the main wake-
influenced regions, and the scanning speed is set as 7.5 degrees per second. Moreover, due to
the limitation of data frequency (e.g. 50 data points per second in the case of ZXTM Lidar),
the virtual device is designed to scan three PPI directions every second, thus leading to a total
of 48 measurement points per second. The overall Lidar setups are illustrated in Figure 1 where
all the data points that are covered by a complete scanning cycle are shown.
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Figure 1. The illustration of the virtual scanning Lidar measurements over the horizontal plane
at the turbine hub height.

2.2. PINNs for wake flow reconstruction
The raw measurements by the virtual Lidar contain only the line-of-sight wind speeds at sparse
spatial locations. To reconstruct the wake flow fields, flow physics, in the form of either analytical
models, simulation data obtained from numerical models, or partial differential equations, must
be used to retrieve the missing information not contained in the measurement data. In this
work, we employ the physics-informed neural networks (PINNs) approach to incorporate the
two-dimensional NS equations in the flow field reconstruction procedure. The overall approach
is similar to the works in [27, 28] which focus on the atmospheric flows in front of the wind
turbines, while this work focuses on the more complex wake flows behind wind turbines. The
overall PINNs structure and its training are briefly described in this section. The interested
reader may refer to [27, 28] for further details.

To construct the machine learning model that is informed by both Lidar data and physics,
the base neural network (NN) is first constructed, which maps the spatiotemporal coordinates
to the flow states. They can be expressed as

Y = N (X) (1)

where

X = [x, y, t],Y = [u, v, p] (2)

Here x, y, t represent the spatial coordinate in the downwind direction, the spatial coordinate
in the crosswind direction, and the time coordinate respectively. u, v, and p represent the wind
speed in the downwind direction, the wind speed in the crosswind direction, and the static
pressure. The base NN, i.e. N , is specified as a fully-connected neural network in this work and
it is parameterised by the trainable weights W which will be updated to minimise the training
loss during the training process.

The training loss is designed to be composed of two parts. The first part, which is the
supervised part, aims to minimise the mismatch between the predicted flow quantities and the
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virtual Lidar measurements. It is defined as

L1 =
1

N1

N1∑
i=1

(uLoSi − ûLoSi )2 (3)

Here uLoSi and ûLoSi represent the ith line-of-sight measurement by Lidar and the projection of
the corresponding NN output at this time and location in the Lidar direction. The second part,
which is the physics-informed part, aims to softly enforce the two-dimensional NS equations at
the test points. It is defined as
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Here eu, ev, ediv are derived using automatic differentiation based on the base NN N . They are
evaluated at the randomly chosen test points in the domain of interest to enforce the constraints
imposed by the 2D NS equations. Finally, the training of the machine learning model is carried
out to minimise the total loss, which is defined as

L = L1 + L2 (5)

Here it is worth mentioning that the overall model is unsupervised from the machine learning
perspective. The only data required for training is the LoS wind speed at the sparse measurement
locations, while the data for the whole flow fields and other unmeasured quantities such as
pressure are not needed.

2.3. Numerical experiments
In this work, the high-fidelity numerical simulation solver SOWFA [31] is used to serve as
the platform to carry out the numerical experiments. The main reason of using numerical
experiments for evaluating the reconstruction performance is that the ground truth for the full
flow fields is available. While in real-world wind energy sites, even though the wind field can
be reconstructed once the Lidar device is installed in place, the evaluation of the reconstruction
accuracy remains a great challenge. In our future work, we will explore the use of wind tunnel
experiments for method evaluations, where the ground truth will be captured by detailed PIV
measurements. This work thus also serves as a guidance for future experimental works, providing
insights on measurement configurations and neural network specifications.

Particularly, in this paper, the neutral atmospheric boundary layer is considered for the large
eddy simulations of wind turbine wakes. The freestream mean wind speed is set as 8 m/s and
the freestream turbulence intensity is set as 6%. The bottom boundary is handled by the surface
stress and temperature flux model as well as zero normal velocity, the top boundary is imposed
with zero stress and temperature flux as well as zero normal velocity, and the cyclic condition
is imposed for the lateral boundaries [32]. The NREL 5MW reference turbine [33] is modelled
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Figure 2. The illustration of the large
eddy simulations of wind turbine wakes.

with the actuator line method in the simulations. The computational domain and the mesh
configuration are illustrated in Figure 2, where the mean wind direction is southwest. To save
the computational resources while ensuring that the detailed wake dynamics are captured, the
mesh is generated with three layers of resolutions [34]. A mesh size of 12 m is used in the
freestream region, a mesh size of 3 m is used in the wake region, and a mesh size of 6 m is
used between the two regions. The wind speeds projected in the laser beam direction at sparse
locations are then extracted from the numerical simulations as the measurements by the virtual
Lidar device, which is the only training data used for the wind field reconstruction. The full
flow field is saved only to serve as the ground truth for performance evaluations.

3. Results
The reconstruction results are given in this section. First, the reconstruction error is reported for
a set of NN structures. Then the structure with the best performance is used for the subsequent
flow field visualisation and wake analysis.

3.1. Neural network structure
The training is carried out using the Adam optimizer with a learning rate of 10−3. All the data
obtained from the virtual Lidar device during the considered time period of 80 seconds is fed
into the machine learning model at each training iteration. Thus N1 in Equation (3) is equal to
16× 241. As for the NS test points in the hub-height 2D plane, a batch size of 4000 is used, i.e.
N2 in Equation (4) is equal to 4000.

To tune the NN structure, an error metric needs to be defined to evaluate the accuracy of
the reconstructed wind fields. It is defined in this work as the time-averaged value of the root
mean square errors (RMSE) of the flow fields, which is expressed as

ϵq =
1

Nt

Nt∑
t=1

√√√√ 1

Nx

Nx∑
i=1

(q̂i,t − qi,t)2 (6)

where q represents the quantity of interest, Nt is the total number of time instants, Nx is the
total number of test points in the flow domain, and q̂i,t and qi,t represent the predicted and the
true values of the quantity q at the ith location and tth instant.

To determine the NN structure, a set of hidden layer neuron numbers and numbers of hidden
layers are tested, and the corresponding reconstruction errors are calculated after training. The
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Table 1. The tuning of the neural network structure. The structure is denoted by the number
of hidden layer neurons × the number of hidden layers.

Neural network structure Speed range [m/s] ϵu [m/s] ϵu/range
32× 3 [1.90, 10.2] 0.858 10.3%
32× 5 [1.90, 10.2] 0.890 10.7%
64× 3 [1.90, 10.2] 0.916 11.0%
64× 5 [1.90, 10.2] 0.824 9.93%
128× 3 [1.90, 10.2] 0.835 10.1%
128× 5 [1.90, 10.2] 0.752 9.06%

results are given in Table 1. As shown, the best reconstruction performance is achieved with a
neural network of 5 hidden layers and 128 neuron numbers. It is therefore used in the rest part
of this paper.

3.2. Flow field reconstruction
This section presents the comparison of the reconstructed flow fields with the ground truth. The
reconstructed flow field, the ground truth, and their difference are shown from the left to the
right side in Figure 3. The results at seven different time instants are included in Figure 3 and
each row represents the flow field at one time instant.

As shown, the reconstructed flow fields agree with the ground truth quite well. Particularly,
in the near wake and far wake regions, the reconstruction errors remain small. On the other
hand, at the side of the turbine where all the Lidar measurement points are far away from this
region, the flow information is not well reconstructed. Moreover, when comparing the results at
different time instants, as can be seen from different rows of Figure 3, the dynamic characteristics
are captured in the reconstructed flow fields, including both the downwind propagation and the
crosswind meandering of the flow structures. For example, a low-speed flow structure in the far
wake is observed at around [x,y] = [350m, 30m] and at t = 10s, as shown in the first row of
Figure 3. Its downwind and crosswind evolution is successfully captured by the reconstructed
flow fields, which can be seen from the second to fifth rows of Figure 3. In terms of RMSEs, it
was only 0.752 m/s, which is just 9.06% of the value range of the wind field.

3.3. Wake profile prediction
To further showcase the performance of the reconstruction method in capturing wake features,
the wake profiles at various downwind stations are extracted from the reconstructed flow fields
and then compared with the ground truth. The results are given in Figure 4, where each
subfigure includes the velocity profiles from the turbine location (i.e. X = 0D), the near wake
region (i.e. X = 1D, 2D, 3D), and to the far wake region (i.e. X = 4D, 5D). The wake profiles at
seven different time instants are given, which correspond to the same time instants as in Figure
3. From the extracted wake profiles, it is clearly observed that the wake is induced at the turbine
location, then a double peak structure is formed in the near wake region, and finally a single
peak structure is observed towards the far wake region. Along with the evolving wake shape, the
wake also gradually recovers towards the freestream wind speed. All these essential features are
captured by the reconstructed profiles. Aside from the region in the immediate vicinity of the
wind turbine, the reconstructed velocity profiles agree well with the corresponding true values.
It is worth mentioning that the successful capturing of the double-peak wake structure lies in
that the sparse data from the scanning Lidar contains useful information regarding the wake
structures while the missing information is retrieved via the flow physics incorporated.
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Figure 3. The flow field reconstruction results. The reconstructed flow field, the ground truth,
and their difference are shown from the left to the right.

Next, the time-averaged wake profiles are examined for completeness, as most of the previous
Lidar-based flow reconstruction focuses on time-averaged wind flow. The results are given in
Figure 5. As shown, the averaged wake profiles are predicted very accurately compared with
the ground truth. As expected, when compared with the instantaneous flow profiles, a much
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Figure 4. The wake profiles at various downwind stations.

Figure 5. The time-averaged
wake profiles at various downwind
stations.

smoother profile is observed for the mean profile, which evolves, at the far wake region, into a
Gaussian-like profile.

3.4. Effective wind speed prediction
Finally, based on the reconstructed flow fields, the effective wind speed along the downwind
direction is extracted. The results, along with the corresponding ground truth, are given in
Figure 6. Here the effective wind speed is calculated as the wind speed averaged over the width
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Figure 6. The effective wind speed at various downwind locations and time instants.

of the wind turbine. As shown, the predicted effective wind speeds agree with the true values at
different time instants and locations. Particularly, the wind speed reduction due to the presence
of the wind turbine, as shown from the turbine location to about 200 m downstream, and the
wind speed recovery afterwards, are both captured by the predicted effective wind speed. This
accurate prediction of the effective wind speed is a useful example showing the potential use
of the reconstructed flow fields for characterizing the wake-induced wind turbine power loss in
wind farms.

4. Conclusions
In this work, the reconstruction of the wind turbine wake flow field was investigated, combining
a virtual Lidar measurements with two-dimensional Navier-Stokes equations via the physics-
informed neural networks. The results showed that the unsteady wake flow fields, including the
shape and strength of the wake, were successfully reconstructed, and the main dynamics were
well captured. The essential wake features were accurately predicted in the reconstructed wake
profiles, including the double peak structure formed in the near wake region and its development
towards the single peak structure in the far wake region. The reconstruction error was quantified
using the root mean squared error between the predicted and true flow fields. The prediction
error was only 0.752 m/s for the wind speed in the inflow wind direction. The successful
prediction of the wake deficit and the wake shape indicates the potential use of the reconstructed
flow fields for wake analysis in real-world wind energy sites, to assist the understanding and
characterisation of full-scale wake flows.

However, the present work combines a virutal Lidar device that is assumed to measure the
line-of-sight wind speed without measurement noise. In practice, various error sources for Lidar
measurements, such as range weighting (which also increases with the measurement distance),
the view blocking of the laser beam by the rotating turbine blades, and the lack of aerosol
particles for effective measurements with a valid carrier-to-noise ratio, will affect the quality
of the reconstructed flow fields. Therefore, future works will need to take these measurement
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errors into account for more realistic evaluations, such as through Bayesian neural networks.
In our future work, the investigation of the flow reconstruction performance via wind tunnel
experiments, as well as the full-scale field campaign, will be further carried out for validations.
In terms of method development, interesting directions include the design of novel approaches
to tackle spectral bias to enable efficient training, and the design of effective transfer learning
approaches to enable online applications.
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2020 1–26
[18] Kelberlau F, Neshaug V, Lønseth L, Bracchi T and Mann J 2020 Remote Sensing 12 898
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